forked from kmotyka00/ScheduleOptimizationProblem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedule.py
780 lines (668 loc) · 33.6 KB
/
schedule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import numpy as np
import pandas as pd
from typing import List
from enum import Enum
import copy
import random
import time
import matplotlib.pyplot as plt
class LessonType(Enum):
"""
Class enumerating lesson types,
enumeration numbers are important,
because they are used in a questionnaire for customers
"""
CELLULITE_KILLER = 0
ZUMBA = 1
ZUMBA_ADVANCED = 2
FITNESS = 3
CROSSFIT = 4
BRAZILIAN_BUTT = 5
PILATES = 6
CITY_PUMP = 7
STRETCHING = 8
YOGA = 9
class Client:
"""
A class used to represent a Client
...
Atributes
---------
id : int
a number which represents the client
selected_training: List[LessonType], default=None
list of the trainings selected by a client
Methods
-------
__str__()
Helps to print information about the client prettier and cleaner
"""
def __init__(self, id: int, selected_training: List[LessonType] = None):
self.id = id
# checks if list of selected trainings was given, if not, creates empty array
if selected_training is None:
self.selected_training = np.array(list())
else:
self.selected_training = np.array(selected_training)
def __str__(self) -> str:
"""
A method which helps to print information about the client
...
Returns
-------
str
string to be printed
"""
return f"id: {self.id}, selected_training: {self.selected_training}"
class Instructor:
"""
A class used to represent an Instructor
...
Atributes
---------
id : int
a number which represents the instructor
qualifications: List[LessonType], default=None
list of the trainings which can be tought by the instructor
Methods
-------
__str__()
Helps to print information about the instructor prettier and cleaner
"""
def __init__(self, id, qualifications: List[LessonType] = None):
self.id = id
# checks if qualifications list was given, if not, creates empty array
if qualifications is None:
self.qualifications = np.array(list())
else:
self.qualifications = np.array(qualifications)
def __str__(self) -> str:
"""
A method which helps to print information about the instructor
...
Returns
-------
str
string to be printed
"""
qualification_str = str()
for elem in self.qualifications:
temp = str(elem).split('.')[1].split('_')
converted_text = str()
for i in range(len(temp)):
converted_text += temp[i] + ' '
qualification_str += converted_text + '\n'
return f"id: {self.id}, qualifications: {qualification_str}"
class Lesson:
"""
A class used to represent a Lesson
...
Atributes
---------
instructor : Instructor
an instructor which conducts classes
lesson_type: LessonType
type of the conducted classes
participiants: List[Client], default=None
a list of clients which take part in the classes
Methods
-------
__str__()
Helps to print information about the lesson prettier and cleaner
"""
def __init__(self, instructor: Instructor, lesson_type: LessonType, participants: List[Client] = None):
self.instructor = instructor
self.lesson_type = lesson_type
# checks if participants list was given, if not, creates empty array
if participants is None:
self.participants = np.array(list())
else:
self.participants = np.array(participants)
def __str__(self):
"""
A method which helps to print information about the lesson
...
Returns
-------
str
string to be printed
"""
# changes "LessonType.Type" representation to "Type" and prints it with instructor id
lesson_type = str(self.lesson_type)
lt = lesson_type.split(sep='.')
lesson_type = lt[1]
return f"I: {self.instructor.id}, L: {lesson_type}"
class Schedule:
"""
A class used to represent our Schedule
...
Atributes
---------
client_file : str, default='form_answers.csv'
the path to the file which contains information about the trainings selected by
clients (ids of the clients and selected training stored in a *.csv file)
instructor_file: str, 'instructors_info.csv'
the path to the file which contains information about the qualifications and ids
of the instructors stored in the *.csv file
class_num: int, default=1
the number of classrooms in the building
day_num: int, default=6
the number of days on which the classes are held
time_slot_num: int, default=6
the number of time slots during a day on which the classes are held
max_clients_per_training: int, default=5
maximum number of clients which can participate in the classes
ticket_cost: int, default=40
cost of a class ticket
hour_pay: int, default=50
instructor's hour pay
pay_for_presence: int, default=50
amount of money which instructor revieves for coming to the workplace
class_renting_cost: int, default=200
cost of renting a class (per day)
use_penalty_method: bool, default=False
if True, constrains are not absolute, but penalty function is applied
Methods
-------
generate_random_schedule(greedy=False)
Based on parameters of our schedule generate random schedule
get_cost(current_solution=None)
Calculate cost of classes for a current schedule
get_neighbor(current_solution)
Move one lesson from current schedule to different timeslot
simulated_annealing(self, alpha=0.9999, initial_temp=1000, n_iter_one_temp=50, min_temp=0.1,
epsilon=0.01, n_iter_without_improvement=1000, initial_solution=True)
Simulated Annealing algorithm which optimizes arranging of a schedule
improve_results()
Minimizes days of presence for each instructor
__str__()
Helps to print a current schedule preety and intuitive
"""
def __init__(self, client_file: str = './client_data/form_answers.csv',
instructor_file: str = './instructor_data/instructors_info.csv',
class_num=1, day_num=6, time_slot_num=6, max_clients_per_training=5,
ticket_cost=40, hour_pay=50, pay_for_presence=50, class_renting_cost=500,
use_penalty_method=False, penalty_for_repeated=250, penalty_for_unmatched=100):
self.class_num = class_num
self.day_num = day_num # monday - saturday
self.time_slot_num = time_slot_num
self.max_clients_per_training = max_clients_per_training
self.clients = list()
df = pd.read_csv(client_file, sep=";")
for index, client in df.iterrows():
self.clients.append(Client(client['Client_ID'],
[LessonType(int(elem)) for elem in client['Lesson_Types'].split(sep=" ")]))
self.clients = np.array(self.clients)
self.instructors = list()
df = pd.read_csv(instructor_file, sep=";")
for index, instructor in df.iterrows():
self.instructors.append(Instructor(instructor['Instructor_ID'],
[LessonType(int(elem)) for elem in
instructor['Lesson_Types'].split(sep=" ")]))
self.instructors = np.array(self.instructors) # lista na początku żeby móc appendować na essie
self.schedule = np.array([None for x in
range(self.class_num * self.day_num * self.time_slot_num)])
self.schedule = self.schedule.reshape((self.class_num, self.day_num, self.time_slot_num))
# economy
self.ticket_cost = ticket_cost
self.hour_pay = hour_pay
self.pay_for_presence = pay_for_presence
self.class_renting_cost = class_renting_cost
# penalty function
self.use_penalty_method = use_penalty_method
self.penalty_for_repeated = penalty_for_repeated
self.penalty_for_unmatched = penalty_for_unmatched
def generate_random_schedule(self, greedy=False):
"""
A method which generates random schedule with respect to parameters of Schedule class.
...
Parameters
----------
greedy: bool, default=False
Decides about the method of generating random schedule. It greedy=True
then all classes are stored time slot by time slot in our schedule (all
classes are held in the row). If greedy=False classes are initialized
totally randomly.
"""
# reshaping to a vector [1 x classes * days * time slots] to facilitate iterating
self.schedule = self.schedule.reshape((-1, 1, 1)).squeeze()
i = 0
# list of free time slots in particular days
free_ts = list(np.arange(self.schedule.shape[0]))
# iterating over lesson types
for lesson_type in LessonType:
# list of all participants and instructor who have chosen particular lesson type
all_participants = [client for client in self.clients if lesson_type in client.selected_training]
all_instructors = {instructor.id: instructor for instructor in self.instructors if
lesson_type in instructor.qualifications}
# number of trainings which need to be coducted to please all clients
num_of_trainings = int(np.ceil(len(all_participants) / self.max_clients_per_training))
# itereting over trainings which need to be conducted
for training in range(num_of_trainings):
# dividing all participiants to particular groups
participants = all_participants[training * self.max_clients_per_training:
training * self.max_clients_per_training + self.max_clients_per_training]
# choosing a way to allocate lessons in schedule
if greedy:
lesson_id = i
i += 1
else:
lesson_id = free_ts.pop(random.randint(0, len(free_ts) - 1))
# TODO obsłużyć zbyt dużą liczbę zajęć - np. poprzez dodanie nowej sali
# interval in vector self.schedule which represents a break between same time slots
# and days in different classes
interval = self.day_num * self.time_slot_num
# iterating over same days and time slots in different classes
for ts in range(lesson_id % interval, self.schedule.shape[0], interval):
# checking if lesson is taking place
if self.schedule[ts] != None:
if self.schedule[ts].instructor.id in all_instructors.keys():
# removing inaccessible instructors from all_instructors list
all_instructors.pop(self.schedule[ts].instructor.id) # TODO: TEST
# random choice of instructor from all_instructors list for new lesson
instructor = random.choice(list(all_instructors.values()))
# putting new lesson to schedule
self.schedule[lesson_id] = Lesson(instructor, lesson_type, participants)
# reshaping self.schedule back to matrix
self.schedule = self.schedule.reshape((self.class_num, self.day_num, self.time_slot_num))
def get_cost(self, current_solution=None):
"""
A method which calculates cost of current solution.
...
Parameters
----------
current_solution: np.array, default=None
If current_solution is None method computes cost for self.schedule,
if given, method computes cost for given parameter.
Returns
-------
float
Cost of given solution.
"""
# initialize optional parameter current_solution
if current_solution is None:
current_solution = self.schedule
participants_sum = 0
instructors_hours = np.zeros(shape=(self.instructors.shape[0], self.day_num))
class_per_day = np.zeros(shape=(self.class_num, self.day_num))
repeated_instructors = 0
unmatched_instructors = 0
# for every lesson in solution count number of participants, instructors' hours and classrooms used
for d in range(current_solution.shape[1]):
for ts in range(current_solution.shape[2]):
used_instructors = list()
for c in range(current_solution.shape[0]):
if current_solution[c, d, ts] is not None:
if current_solution[c, d, ts].lesson_type not in \
current_solution[c, d, ts].instructor.qualifications:
unmatched_instructors += 1
used_instructors.append(current_solution[c, d, ts].instructor.id)
participants_sum += current_solution[c, d, ts].participants.shape[0]
instructors_hours[current_solution[c, d, ts].instructor.id, d] += 1
class_per_day[c, d] = 1
repeated_instructors += len(used_instructors) - len(set(used_instructors))
# count cost function
cost = self.ticket_cost * participants_sum - \
self.hour_pay * instructors_hours.sum() - \
self.pay_for_presence * (instructors_hours > 0).sum() - \
self.class_renting_cost * class_per_day.sum()
if self.use_penalty_method:
cost -= unmatched_instructors * self.penalty_for_unmatched + \
repeated_instructors * self.penalty_for_repeated
return cost
def get_neighbor(self, current_solution, neighborhood_type_lst: List[str]):
"""
A method which generates new solution which differ from previous one
only by one classes.
Method randomly chooses one lesson and moves it to different time slot.
...
Parameters
----------
current_solution: np.array
Parameter which contains solution for which we want to find a neighbor.
neighborhood_type_lst: List[str]
Parameter specify method of choosing neighborhood
Returns
-------
np.array
Generated neighbor.
"""
# TODO uwzględnić ograniczenia
for neighborhood_type in neighborhood_type_lst:
if neighborhood_type == 'move_one' or neighborhood_type == 'move_two':
# reshaping current_solution to make sure it's a matrix
current_solution = current_solution.reshape((-1, 1, 1))
if neighborhood_type == 'move_one':
i_max = 1
else:
i_max = 2
for i in range(i_max):
# get list of indices where lesson is scheduled
# using != None is necessary, because we are interested in
# checking if value in array is None, not if array is None
not_none_id_list = np.argwhere(current_solution != None)
# choose random index from not_none_id_list
random_not_none_id = tuple(random.choice(not_none_id_list))
# get list of indices where timeslot is free
# using == None is necessary, because we are interested in
# checking if value in array is None, not if array is None
none_id_list = np.argwhere(current_solution == None)
random_none_id = tuple(random.choice(none_id_list))
# swap values contained in drawn indices
current_solution[random_none_id] = current_solution[random_not_none_id]
current_solution[random_not_none_id] = None
if neighborhood_type == 'move_to_most_busy' or neighborhood_type == 'swap_with_most_busy':
# reshaping current_solution to make sure it's a matrix
current_solution = current_solution.reshape((self.class_num, self.day_num, self.time_slot_num))
most_busy = None
most_trainings = 0
least_busy = None
least_trainings = self.time_slot_num
for c in range(self.schedule.shape[0]):
for d in range(self.schedule.shape[1]):
trainings_num = np.count_nonzero(current_solution[c, d, :] != None)
if neighborhood_type == 'move_to_most_busy':
condition = most_trainings <= trainings_num < self.time_slot_num
else:
condition = most_trainings <= trainings_num
if condition:
most_trainings = trainings_num
most_busy = (c, d)
if least_trainings >= trainings_num >= 1:
least_trainings = trainings_num
least_busy = (c, d)
c_least, d_least = least_busy
id_least = random.choice(np.argwhere(current_solution[c_least, d_least, :] != None))
c_most, d_most = most_busy
if neighborhood_type == 'move_to_most_busy':
id_most = random.choice(np.argwhere(current_solution[c_most, d_most, :] == None))
current_solution[c_most, d_most, id_most] = current_solution[c_least, d_least, id_least]
current_solution[c_least, d_least, id_least] = None
elif neighborhood_type == 'swap_with_most_busy':
id_most = random.choice(np.argwhere(current_solution[c_most, d_most, :] != None))
current_solution[c_most, d_most, id_most], current_solution[c_least, d_least, id_least] \
= current_solution[c_least, d_least, id_least], current_solution[c_most, d_most, id_most]
if neighborhood_type == 'change_instructor':
current_solution = current_solution.reshape((-1, 1, 1))
not_none_id_list = np.argwhere(current_solution != None)
random_not_none_id = tuple(random.choice(not_none_id_list))
type_of_selected_lesson = current_solution[random_not_none_id].lesson_type
if self.use_penalty_method:
available_instructors = self.instructors
else:
available_instructors = [instructor for instructor in self.instructors
if type_of_selected_lesson in instructor.qualifications and
instructor.id != current_solution[random_not_none_id].instructor.id]
if len(available_instructors) == 0:
new_instructor = current_solution[random_not_none_id].instructor
else:
new_instructor = random.choice(available_instructors)
current_solution[random_not_none_id].instructor = new_instructor
current_solution = current_solution.reshape((self.class_num, self.day_num, self.time_slot_num))
return current_solution
def simulated_annealing(self, alpha=0.999, initial_temp=100, n_iter_one_temp=50, min_temp=0.1,
epsilon=0.01, n_iter_without_improvement=1000, initial_solution=True,
neighborhood_type_lst=None, greedy=False):
"""
Simulated Annealing is a probabilistic technique for approximating the global optimum
of a given function.
...
Parameters
----------
alpha: float, default=0.999
Parameter between (0, 1). Used to change pace of lowering the temperature.
When closer to 1 temperature will decrease slower.
initial_temp: float, default=1000
Initial temeprature.
n_iter_one_temp: int, default=50
Number of iterations with the same value of the temperature.
min_temp: float, default=0.1
The temperature witch algorithm seeks to.
epsilon: float, default=0.01
Value of the accteptalbe absolute error.
n_iter_without_improvement: int, default=1000
Number of iterations needed to be processed without crossing the epsilon to
accept the solution.
initial_solution: bool, default=True
If initial_solution solution is False algorithm will generate random schedule.
If True, algortihm will optimize self.schedule.
neighborhood_type_lst: List[str]
Parameter specify method of choosing neighborhood
greedy: bool, defalut=False
Create initial solution packing trainings next to each other
Returns
-------
best_cost: float
Best earnings achieved while algorithm was running.
total_counter: int
Number of iterations processed when the algorithm was running.
"""
if neighborhood_type_lst is None:
neighborhood_type_lst = ['move_one']
if not initial_solution:
self.generate_random_schedule(greedy) # self.schedule initialized
# copy existing schedule to prevent unwanted changes
current_solution = copy.deepcopy(self.schedule)
best_solution = copy.deepcopy(current_solution)
current_temp = initial_temp
# count current cost
current_cost = self.get_cost(current_solution)
best_cost = self.get_cost(best_solution)
# counter for n_iter_without_improvement
counter = 0
# counter of total number of iterations
total_counter = 0
# list containing all costs
all_costs = list()
# loop while non of stopping criteria is fulfilled
while current_temp > min_temp and counter < n_iter_without_improvement:
for j in range(0, n_iter_one_temp):
total_counter += 1
neighbor_solution = self.get_neighbor(current_solution, neighborhood_type_lst)
neighbor_cost = self.get_cost(neighbor_solution)
# delta - value to evaluate quality of new solution
delta = neighbor_cost - current_cost
# if ne solution is better than current one - take it
if delta >= 0:
current_solution = neighbor_solution
current_cost = neighbor_cost
if current_cost > best_cost:
best_solution = copy.deepcopy(current_solution)
best_cost = current_cost
# else if s is small enough take it anyway
else:
s = random.uniform(0, 1)
if s < np.exp(delta / current_temp):
current_solution = neighbor_solution
current_cost = neighbor_cost
all_costs.append(current_cost)
# decrease temperature
current_temp = alpha * current_temp
# check if new solution gives different cost - 2nd stopping criteria
if (abs(current_cost - best_cost)) < epsilon:
counter += 1
else:
counter = 0
self.schedule = best_solution
return best_cost, total_counter, all_costs
def improve_results(self):
# TODO: dodać wyświtlanie przed i po w GUUI
"""
Minimizes days of presence for each instructor.
Method which looks for days when instructor teaches only one class and tries
to move this lesson to a day when instructor provides more classes.
...
Parameters
----------
"""
# loop repeating until there is no change to ensure
# that instructor 1 can be moved in space freed by instructor 3
changed = True
iter = 0
while changed and iter < 1000:
iter += 1
changed = False
# loop for each instructor
for instructor in self.instructors:
# pick all trainings taught by instructor
# in format
# [day, list of timeslots of lessons taught by instructor, list of timeslots free in that day, class]
trainings = list()
for c in range(self.schedule.shape[0]):
for d in range(self.schedule.shape[1]):
timeslots = list()
free_ts = list()
for ts in range(self.schedule.shape[2]):
if self.schedule[c, d, ts] != None:
if self.schedule[c, d, ts].instructor.id == instructor.id:
timeslots.append(ts)
else:
free_ts.append(ts)
if len(timeslots) > 0:
trainings.append([d, timeslots, free_ts, c])
# sorting trainings by number of lessons taught by instructor in that day
trainings = [v for v in sorted(trainings, key=lambda item: len(item[1]))]
# for each day check if trainings can be reassigned
# to some day with more trainings thought by that instructor
for i in range(len(trainings) - 1):
for j in range(i + 1, len(trainings)):
timeslots_taken = list()
changed = False
REASSIGNMENT_INVALID_FLAG = False
# check if lessons from trainings[i] can be reassigned
# to the day represented by trainings[j]
if len(trainings[i][1]) <= len(trainings[j][2]):
for ts_iter in range(len(trainings[i][1])):
for c in range(self.schedule.shape[0]):
if self.schedule[c, trainings[j][0], trainings[j][2][ts_iter]] is not None:
if self.schedule[c, trainings[j][0], trainings[j][2][ts_iter]].instructor.id \
== instructor.id:
REASSIGNMENT_INVALID_FLAG = True
if REASSIGNMENT_INVALID_FLAG:
break
# reassign
self.schedule[trainings[j][3], trainings[j][0], trainings[j][2][ts_iter]] = \
self.schedule[trainings[i][3], trainings[i][0], trainings[i][1][ts_iter]]
self.schedule[trainings[i][3], trainings[i][0], trainings[i][1][ts_iter]] = None
# add to taken sluts in j
trainings[j][1].append(trainings[j][2][ts_iter])
# add to free slots in i
trainings[i][2].append(trainings[i][1][ts_iter])
# memorize to delete from free in j
timeslots_taken.append(trainings[j][2][ts_iter])
# mark that changes have been made
changed = True
if not REASSIGNMENT_INVALID_FLAG:
# delete memorized slots from free in j
for ts_iter in timeslots_taken:
trainings[j][2].remove(ts_iter)
# clear list of taken slots in i
trainings[i][1] = []
# if previous statement is untrue check if opposite reassignment can be performed,
# i. e. check if lessons from trainings[j] can be reassigned
# to the day represented by trainings[i]
elif len(trainings[i][2]) > len(trainings[j][1]):
for ts_iter in range(len(trainings[j][1])):
for c in range(self.schedule.shape[0]):
if self.schedule[c, trainings[i][0], trainings[i][2][ts_iter]] is not None:
if self.schedule[c, trainings[i][0], trainings[i][2][ts_iter]].instructor.id \
== instructor.id:
REASSIGNMENT_INVALID_FLAG = True
if REASSIGNMENT_INVALID_FLAG:
break
self.schedule[trainings[i][3], trainings[i][0], trainings[i][2][ts_iter]] = \
self.schedule[trainings[j][3], trainings[j][0], trainings[j][1][ts_iter]]
self.schedule[trainings[j][3], trainings[j][0], trainings[j][1][ts_iter]] = None
# add to taken slots in i
trainings[i][1].append(trainings[i][2][ts_iter])
# add to free sluts in j
trainings[j][2].append(trainings[j][1][ts_iter])
# memorize to delete from free in i
timeslots_taken.append(trainings[i][2][ts_iter])
# mark that changes have been made
changed = True
if not REASSIGNMENT_INVALID_FLAG:
# delete memorized slots from free in i
for ts_iter in timeslots_taken:
trainings[i][2].remove(ts_iter)
# clear list of taken slots in i
trainings[j][1] = []
# if changes have been made
if changed:
# sort trainings to keep ascending order of
# number of lessons thought by instructor in that day
trainings = [v for v in sorted(trainings, key=lambda item: len(item[1]))]
# go to next iteration of i - next iterations for that i are unnecessary,
# because trainings[i] have been reassigned
break
def __str__(self):
"""
Helps to print a current schedule preety and intuitive.
...
Returns
-------
str
string to be printed
"""
result = str()
days = ["----- MONDAY -----", "----- TUESDAY -----", "----- WEDNESDAY -----", "----- THURSDAY -----",
"----- FRIDAY -----", "----- SATURDAY -----"]
hour = ["16:00 - 17:00", "17:00 - 18:00", "18:00 - 19:00", "19:00 - 20:00", "20:00 - 21:00", "21:00 - 22:00"]
for c in range(self.schedule.shape[0]):
for d in range(self.schedule.shape[1]):
result += "\n" + days[d] + "\n\n"
for ts in range(self.schedule.shape[2]):
result += hour[ts] + "\t"
if self.schedule[c, d, ts] is None:
result += "Free\n"
else:
result += str(self.schedule[c, d, ts]) + "\n"
return result
#
# SM = Schedule(client_file='./client_data/form_answers_2.csv',
# instructor_file='./instructor_data/instructors_info_2.csv',
# max_clients_per_training=5, time_slot_num=6, class_num=2)
# SM.generate_random_schedule(greedy=False)
#
# print("\nINITIAL SCHEDULE")
# print(SM)
# print('Initial earnings: ', SM.get_cost())
# first_cost = SM.get_cost()
# tic = time.time()
# best_cost, num_of_iter, all_costs = SM.simulated_annealing(alpha=0.999, initial_temp=1000, n_iter_one_temp=10,
# min_temp=0.1,
# epsilon=0.01, n_iter_without_improvement=10,
# initial_solution=True, neighborhood_type_lst=['move_one',
# 'change_instructors'])
# toc = time.time()
#
# print("\nAFTER OPTIMIZATION")
# print(SM)
# print("Number of iterations: ", num_of_iter)
#
# print("Best earnings: ", best_cost)
# second_cost = best_cost
# print("Time: ", toc - tic)
#
# SM.improve_results()
# print("\nIMPROVED SCHEDULE")
# print(SM)
# print("Best improved earnings: ", SM.get_cost())
#
# third_cost = SM.get_cost()
#
# print(f'{first_cost} $ --> {second_cost} $ --> {third_cost} $')
#
# plt.figure()
# plt.plot(all_costs)
# plt.title('Goal function over number of iterations')
# plt.xlabel('Number of iterations')
# plt.ylabel('Earnings [$]')
# plt.show()
# TODO: - dodanie listy kompetencji i mniej losowe przydzielanie prowadzących do zajęć (może jako prawdopodobieństwo)
# TODO: - ograniczenia - chwiliowo pomijamy ograniczenie 6) i 7)
# TODO: - z 7) można zrobić tak, że po ułożeniu już planu sprawdzamy dla każdego użytkownika ile razy w tygodniu
# trenuje i jeśli jego liczba treningów jest większa niż max to przenosimy go do innej grupy. Można założyć na
# początku działania algorytmu limit np. 12 (zamiast 10) żeby mieć jakieś pole manewru. Takie podejście może
# okazać się lepsze bo nie utrudnia działania algorytmu a takich przypadków nie powinno być dużo
# TODO: - dodać dokumentację