@@ -1012,10 +1012,12 @@ def pca(data=None, dim=-1, var_cutoff=0.95, stride=1, mean=None, skip=0, chunksi
10121012 warnings .warn ("provided mean ignored" , DeprecationWarning )
10131013
10141014 res = PCA (dim = dim , var_cutoff = var_cutoff , mean = None , skip = skip , stride = stride )
1015+ from pyemma .util .reflection import get_default_args
1016+ cs = _check_old_chunksize_arg (chunksize , get_default_args (pca )['chunksize' ], ** kwargs )
10151017 if data is not None :
1016- from pyemma .util .reflection import get_default_args
1017- cs = _check_old_chunksize_arg (chunksize , get_default_args (pca )['chunksize' ], ** kwargs )
10181018 res .estimate (data , chunksize = cs )
1019+ else :
1020+ res .chunksize = cs
10191021 return res
10201022
10211023
@@ -1256,6 +1258,8 @@ def tica(data=None, lag=10, dim=-1, var_cutoff=0.95, kinetic_map=True, commute_m
12561258 weights = weights , reversible = reversible , ncov_max = ncov_max )
12571259 if data is not None :
12581260 res .estimate (data , chunksize = cs )
1261+ else :
1262+ res .chunksize = cs
12591263 return res
12601264
12611265
@@ -1267,14 +1271,13 @@ def vamp(data=None, lag=10, dim=None, scaling=None, right=True, ncov_max=float('
12671271 ----------
12681272 lag : int
12691273 lag time
1270- dim : float or int
1274+ dim : float or int, default=None
12711275 Number of dimensions to keep:
12721276
1273- * if dim is not set all available ranks are kept:
1277+ * if dim is not set (None) all available ranks are kept:
12741278 `n_components == min(n_samples, n_features)`
12751279 * if dim is an integer >= 1, this number specifies the number
1276- of dimensions to keep. By default this will use the kinetic
1277- variance.
1280+ of dimensions to keep.
12781281 * if dim is a float with ``0 < dim < 1``, select the number
12791282 of dimensions such that the amount of kinetic variance
12801283 that needs to be explained is greater than the percentage
@@ -1406,6 +1409,8 @@ def vamp(data=None, lag=10, dim=None, scaling=None, right=True, ncov_max=float('
14061409 res = VAMP (lag , dim = dim , scaling = scaling , right = right , skip = skip , ncov_max = ncov_max )
14071410 if data is not None :
14081411 res .estimate (data , stride = stride , chunksize = chunksize )
1412+ else :
1413+ res .chunksize = chunksize
14091414 return res
14101415
14111416
@@ -1502,6 +1507,8 @@ def covariance_lagged(data=None, c00=True, c0t=True, ctt=False, remove_constant_
15021507 weights = weights , stride = stride , skip = skip , ncov_max = ncov_max )
15031508 if data is not None :
15041509 lc .estimate (data , chunksize = chunksize )
1510+ else :
1511+ lc .chunksize = chunksize
15051512 return lc
15061513
15071514
@@ -1552,10 +1559,12 @@ def cluster_mini_batch_kmeans(data=None, k=100, max_iter=10, batch_size=0.2, met
15521559 from pyemma .coordinates .clustering .kmeans import MiniBatchKmeansClustering
15531560 res = MiniBatchKmeansClustering (n_clusters = k , max_iter = max_iter , metric = metric , init_strategy = init_strategy ,
15541561 batch_size = batch_size , n_jobs = n_jobs , skip = skip , clustercenters = clustercenters )
1562+ from pyemma .util .reflection import get_default_args
1563+ cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_mini_batch_kmeans )['chunksize' ], ** kwargs )
15551564 if data is not None :
1556- from pyemma .util .reflection import get_default_args
1557- cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_mini_batch_kmeans )['chunksize' ], ** kwargs )
15581565 res .estimate (data , chunksize = cs )
1566+ else :
1567+ res .chunksize = chunksize
15591568 return res
15601569
15611570
@@ -1687,10 +1696,12 @@ def cluster_kmeans(data=None, k=None, max_iter=10, tolerance=1e-5, stride=1,
16871696 res = KmeansClustering (n_clusters = k , max_iter = max_iter , metric = metric , tolerance = tolerance ,
16881697 init_strategy = init_strategy , fixed_seed = fixed_seed , n_jobs = n_jobs , skip = skip ,
16891698 keep_data = keep_data , clustercenters = clustercenters , stride = stride )
1699+ from pyemma .util .reflection import get_default_args
1700+ cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_kmeans )['chunksize' ], ** kwargs )
16901701 if data is not None :
1691- from pyemma .util .reflection import get_default_args
1692- cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_kmeans )['chunksize' ], ** kwargs )
16931702 res .estimate (data , chunksize = cs )
1703+ else :
1704+ res .chunksize = cs
16941705 return res
16951706
16961707
@@ -1764,10 +1775,12 @@ def cluster_uniform_time(data=None, k=None, stride=1, metric='euclidean',
17641775 """
17651776 from pyemma .coordinates .clustering .uniform_time import UniformTimeClustering
17661777 res = UniformTimeClustering (k , metric = metric , n_jobs = n_jobs , skip = skip , stride = stride )
1778+ from pyemma .util .reflection import get_default_args
1779+ cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_uniform_time )['chunksize' ], ** kwargs )
17671780 if data is not None :
1768- from pyemma .util .reflection import get_default_args
1769- cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_uniform_time )['chunksize' ], ** kwargs )
17701781 res .estimate (data , chunksize = cs )
1782+ else :
1783+ res .chunksize = cs
17711784 return res
17721785
17731786
@@ -1863,10 +1876,12 @@ def cluster_regspace(data=None, dmin=-1, max_centers=1000, stride=1, metric='euc
18631876 from pyemma .coordinates .clustering .regspace import RegularSpaceClustering as _RegularSpaceClustering
18641877 res = _RegularSpaceClustering (dmin , max_centers = max_centers , metric = metric ,
18651878 n_jobs = n_jobs , stride = stride , skip = skip )
1879+ from pyemma .util .reflection import get_default_args
1880+ cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_regspace )['chunksize' ], ** kwargs )
18661881 if data is not None :
1867- from pyemma .util .reflection import get_default_args
1868- cs = _check_old_chunksize_arg (chunksize , get_default_args (cluster_regspace )['chunksize' ], ** kwargs )
18691882 res .estimate (data , chunksize = cs )
1883+ else :
1884+ res .chunksize = cs
18701885 return res
18711886
18721887
@@ -1952,11 +1967,13 @@ def assign_to_centers(data=None, centers=None, stride=1, return_dtrajs=True,
19521967 ' or NumPy array or a reader created by source function' )
19531968 from pyemma .coordinates .clustering .assign import AssignCenters
19541969 res = AssignCenters (centers , metric = metric , n_jobs = n_jobs , skip = skip , stride = stride )
1970+ from pyemma .util .reflection import get_default_args
1971+ cs = _check_old_chunksize_arg (chunksize , get_default_args (assign_to_centers )['chunksize' ], ** kwargs )
19551972 if data is not None :
1956- from pyemma .util .reflection import get_default_args
1957- cs = _check_old_chunksize_arg (chunksize , get_default_args (assign_to_centers )['chunksize' ], ** kwargs )
19581973 res .estimate (data , chunksize = cs )
19591974 if return_dtrajs :
19601975 return res .dtrajs
1976+ else :
1977+ res .chunksize = cs
19611978
19621979 return res
0 commit comments