-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaternal_depression_data.Rmd
597 lines (424 loc) · 17.2 KB
/
maternal_depression_data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
---
title: "NICHD Decoding Maternal Morbidity Data Challenge: predicting post-partum depression and assessing the socioeconomic impact"
author:
name: "Dr. Martin G. Frasch"
affiliation: "Health Stream Analytics"
date: "`r Sys.Date()`"
output:
html_document:
toc: yes
df_print: paged
html_notebook:
toc: yes
toc_float: yes
theme: paper
number_sections: yes
---
```{r setup, include=FALSE}
# knitr::opts_chunk$set(echo = TRUE, eval = FALSE, message=TRUE, include=TRUE, warnings = FALSE, dev="png",dpi=300)
knitr::opts_chunk$set(echo = TRUE)
# be careful with cache setting: set to FALSE if you want to rerun all code before knitting
# more info: https://bookdown.org/yihui/rmarkdown-cookbook/cache.html
# syntax to time execution of a cell in R | added as time_it snippet | invoke with shift+TAB
ptm<-proc.time()
# insert my code
proc.time()-ptm
```
```{r, include=FALSE}
local({r <- getOption("repos"); r["CRAN"] <- "http://cran.us.r-project.org"; options(repos = r)})
if (!"R.utils" %in% rownames(installed.packages())) install.packages("R.utils")
setwd("/home/bizon/Documents/mu2b/")
options(echo=TRUE)
TEST_ROOT_DIR <- ".."
```
# Read the data
```{r load general packages for handling big data}
library(tidyverse)
library(data.table)
library(dplyr)
library(readxl)
library(caret)
library(magrittr)
```
```{r read the raw data, cache=TRUE}
ptm<-proc.time()
f<-"/home/bizon/Documents/nuMoM2b_Dataset_NICHD_Data_Challenge.csv"
mu_data_df <- fread(f)
proc.time()-ptm
```
## Set up easy in-the-app viewing of the accompanying coding and info spreadsheets
I want to be able to look up quickly and select the correct predictor and response variables directly inside this R Studio environment. Eventually, this could be extended to allow variable selection to pass them on to "predictors" and "response" variables used in the various machine learning (ML) models below.
For now, we are simply manually selecting the clinically/medically meaningful predictors/response variables, check them for artifacts, clean up those artifacts as appropriate and proceed to ML modeling to test our hypotheses.
```{r read the explanatory files to handle everything in one place, cache=TRUE}
ptm<-proc.time()
f1_info<-"/home/bizon/Documents/mu2b/nuMoM2b_Dataset_Information.xlsx"
f2_code<-"/home/bizon/Documents/mu2b/nuMoM2b_Codebook_NICHD_Data_Challenge.xlsx"
mu_info_df <- read_excel(f1_info)
mu_code_df <- read_excel(f2_code)
proc.time()-ptm
```
Now that we loaded our Information and Code spreadsheets, we can use DT library to view and search in them easily.
*Note: it is best to open the output tables in a new window.*
```{r view code and info tables, cache=TRUE}
library(DT)
datatable(mu_code_df, filter = 'top', options = list(pageLength = 10, autoWidth = TRUE))
datatable(mu_info_df, filter = 'top', options = list(pageLength = 10, autoWidth = TRUE))
```
# Preprocessing
[[I need to remove NA and non-sense values from]{.ul}]{.smallcaps} [CMAE04a4c[**.**]{.smallcaps}]{.ul}
*Note: this step can be repeated as needed in the preprocessing pipeline for the desired response variable*
```{r remove NA rows for CMAE04a4c, cache=TRUE}
# select "CMAE04a4c" | if NA, remove that row
# remove all rows where the column CMAJ01 has NA
clean_CMAE04a4c_df<-mu_data_df[!is.na(mu_data_df$CMAE04a4c), ]
# The above won't work on an h2o object, but works on a regular dataframe, so reading as df first and then, once preprocessing is done, moving on to h2o
```
```{r preprocessing_results_view_with_dplyr1, echo=TRUE, paged.print=TRUE, cache=TRUE}
glimpse(clean_CMAE04a4c_df$CMAE04a4c)
count(clean_CMAE04a4c_df, CMAE04a4c)
nrow(clean_CMAE04a4c_df[mu_data_df$CMAE04a4c])
sum(is.na(clean_CMAE04a4c_df$CMAE04a4c))
```
Only ten cases where PTSD postpartum CMAE04a4c=1. Not enough data for the ML approach at this time.
Exploring CMAE04a1c (postpartum depression).
```{r remove NA rows for CMAE04a1c, cache=TRUE}
# select "CMAE04a1c" | if NA, remove that row
# remove all rows where the column CMAJ01 has NA
clean_CMAE04a1c_df<-mu_data_df[!is.na(mu_data_df$CMAE04a1c), ]
# The above won't work on an h2o object, but works on a regular dataframe, so reading as df first and then, once preprocessing is done, moving on to h2o
```
```{r preprocessing_results_view_with_dplyr2, echo=TRUE, paged.print=TRUE, cache=TRUE}
glimpse(clean_CMAE04a1c_df$CMAE04a1c)
count(clean_CMAE04a1c_df, CMAE04a1c)
nrow(clean_CMAE04a1c_df[mu_data_df$CMAE04a1c])
sum(is.na(clean_CMAE04a1c_df$CMAE04a1c))
```
There are n=338 positive outcomes, so will pursue this in the following with the ML approaches as done for the re-hospitalization outcome before.
```{r load h2o}
library(h2o)
h2o.init()
```
```{r read_into_h2o, cache=TRUE}
ptm<-proc.time()
mu_data <- as.h2o(clean_CMAE04a1c_df)
proc.time()-ptm
```
```{r set_predictors_response, cache=TRUE}
mu_data[,"CMAE04a1c"]<-as.factor(mu_data[,"CMAE04a1c"])
# predictors "participant", "demographics" dataset (column A) includes the relevant features
# concludes the variables from "demographics" dataset; model as is and test later by adding participant features from the "CMA" set
predictors<-c("CRace",
"Race",
"eRace",
"eHispanic",
"BMI",
"BMI_Cat",
"Education",
"GravCat",
"SmokeCat1",
"SmokeCat2",
"SmokeCat3",
"Ins_Govt",
"Ins_Mil",
"Ins_Comm",
"Ins_Pers",
"Ins_Othr",
"PctFedPoverty",
"poverty",
"V1AD02g", #adding psych predictors here
"CMAE04a1b",
"CMAE04a4a",
"CMAE04a4b"
) #makes a list of predicting variables
response<-"CMAE04a1c"
```
# ML modeling
## Train the DRF model
(first, let's do a "quick&dirty" way = no hold-out dataset to get some sense of the data from ML standpoint)
```{r first_drf_model, cache=TRUE}
# user note: if you re-start h2o JVM, you must re-import the dataset and predictors/response vars
test2_mother_mu_data_RFmodel<-h2o.randomForest(x=predictors,y=response,training_frame = mu_data, nfolds=10,seed = 1234)
```
```{r model performance, cache=TRUE}
test2_mother_mu_data_RFmodel
```
AUC: 0.9346045
AUCPR: 0.6157573
That was a quick test.
Now I need to create a hold-out dataset first; repeat the above then as test:validation.
## Split the data 0.8 for training:validation
```{r data_split, cache=TRUE}
mother2_mu_data_split <- h2o.splitFrame(mu_data, ratios=0.8, seed = 1)
```
```{r assign_train_validation, cache=TRUE}
train=mother2_mu_data_split[[1]]
valid=mother2_mu_data_split[[2]]
```
## Train the DRF model on the training dataset = 0.8
```{r train_DRF_on_test_dataset, cache=TRUE}
ptm<-proc.time()
mother2_mu_data_RFmodel<-h2o.randomForest(x=predictors,y=response,training_frame = train, nfolds=10,seed = 1234)
proc.time()-ptm
```
## Predict using the DRF model on the testing dataset =0.2
> Yields AUC: 0.9288383 and AUCPR: 0.6338817
```{r performance of the _real_ DRF model, message=TRUE, paged.print=TRUE, cache=TRUE}
ptm<-proc.time()
mother2_mu_data_predict<-h2o.predict(object=mother2_mu_data_RFmodel, newdata=valid)
mother2_mu_data_RFmodel
proc.time()-ptm
```
### AUROCpr for predicting re-hospitalization based on patient demographics alone
```{r plot AUROCpr, echo=TRUE, cache=TRUE}
mod=mother2_mu_data_RFmodel
perf <- h2o.performance(mod,valid)
metrics <- as.data.frame(h2o.metric(perf))
metrics
metrics %>%
ggplot(aes(recall,precision)) +
geom_line() +
theme_minimal()
metrics %>%
ggplot(aes(precision, accuracy)) +
geom_line() +
theme_minimal()
```
### Explain the model
```{r model_performance_on_test_dataset, cache=TRUE}
ptm<-proc.time()
# toggle progress bar if desired:
# h2o.show_progress()
exp <-h2o.explain(object=mother2_mu_data_RFmodel, newdata=valid)
print(exp)
proc.time()-ptm
```
### Statistics summary
```{r function to see the results, cache=TRUE}
results_df <- function(h2o_model) {
h2o_model@model$cross_validation_metrics_summary %>%
as.data.frame() %>%
select(-mean, -sd) %>%
t() %>%
as.data.frame() %>%
mutate_all(as.character) %>%
mutate_all(as.numeric) -> k
k %>%
select(Accuracy = accuracy,
AUC = auc,
Precision = precision,
Specificity = specificity,
Recall = recall,
Logloss = logloss) %>%
return()
}
```
```{r producing the statistics summary, cache=TRUE}
# Using function
results_df(mod) -> outcome
# Outcome
outcome %>%
gather(Metrics, Values) %>%
ggplot(aes(Metrics, Values, fill = Metrics, color = Metrics)) +
geom_boxplot(alpha = 0.3, show.legend = FALSE) +
facet_wrap(~ Metrics, scales = "free") +
labs(title = "Performance of our ML model using H2o package ",
caption = "Data Source: NICHD Decoding Maternal Morbidity Data Challenge\nCreated by Martin Frasch (further credit to https://bit.ly/3BpPqcb)") +
theme_minimal()
```
```{r Tabular statistics summary, cache=TRUE}
# Statistics summary
outcome %>%
gather(Metrics, Values) %>%
group_by(Metrics) %>%
summarise_each(funs(mean, median, min, max, sd, n())) %>%
mutate_if(is.numeric, function(x) {round(100*x, 2)}) %>%
knitr::kable(col.names = c("Criterion", "Mean", "Median", "Min", "Max", "SD", "N"))
```
## Building an interpretable decision tree model
```{r decision_tree_model, cache=TRUE}
maternal_dt_model<-h2o.gbm(x=predictors,y=response,training_frame = train, validation_frame = valid, balance_classes = TRUE, seed = 1234, nfolds=10)
# GBM hyperparamters
gbm_params = list(max_depth = seq(2, 10))
# Train and validate a cartesian grid of GBMs
gbm_grid = h2o.grid("gbm", x = predictors, y = response,
grid_id = "gbm_grid_1tree8",
training_frame = train,
validation_frame = valid,
balance_classes = TRUE,
ntrees = 1, min_rows = 1, sample_rate = 1, col_sample_rate = 1,
learn_rate = .01, seed = 1234,
hyper_params = gbm_params)
gbm_gridperf = h2o.getGrid(grid_id = "gbm_grid_1tree8",
sort_by = "auc",
decreasing = TRUE)
```
```{r GBM_performance, cache=TRUE}
# what is the performance of this GBM?
maternal_dt_model
```
We obtain AUC: 0.9473067, AUCPR: 0.6510553
```{r GBM_grid_performance, cache=TRUE}
gbm_gridperf
```
Inflection point is at max_depth=5
```{r train GBM, cache=TRUE}
maternal_1_tree = h2o.gbm(x = predictors, y = response,
training_frame = train, balance_classes = TRUE,
ntrees = 1, min_rows = 1, sample_rate = 1, col_sample_rate = 1,
max_depth = 5,
# use early stopping once the validation AUC doesn't improve by at least 0.01%
# for 5 consecutive scoring events
stopping_rounds = 3, stopping_tolerance = 0.01,
stopping_metric = "AUC",
seed = 1)
maternal_1_tree
```
AUCPR: 0.882762
```{r maternal_tree, cache=TRUE}
maternal_Tree = h2o.getModelTree(model = maternal_1_tree, tree_number = 1)
```
```{r function_viz_tree, cache=TRUE}
# Visualizing H2O Trees
library(data.tree)
createDataTree <- function(h2oTree) {
h2oTreeRoot = h2oTree@root_node
dataTree = Node$new(h2oTreeRoot@split_feature)
dataTree$type = 'split'
addChildren(dataTree, h2oTreeRoot)
return(dataTree)
}
addChildren <- function(dtree, node) {
if(class(node)[1] != 'H2OSplitNode') return(TRUE)
feature = node@split_feature
id = node@id
na_direction = node@na_direction
if(is.na(node@threshold)) {
leftEdgeLabel = printValues(node@left_levels, na_direction=='LEFT', 4)
rightEdgeLabel = printValues(node@right_levels, na_direction=='RIGHT', 4)
}else {
leftEdgeLabel = paste("<", node@threshold, ifelse(na_direction=='LEFT',',NA',''))
rightEdgeLabel = paste(">=", node@threshold, ifelse(na_direction=='RIGHT',',NA',''))
}
left_node = node@left_child
right_node = node@right_child
if(class(left_node)[[1]] == 'H2OLeafNode')
leftLabel = paste("prediction:", left_node@prediction)
else
leftLabel = left_node@split_feature
if(class(right_node)[[1]] == 'H2OLeafNode')
rightLabel = paste("prediction:", right_node@prediction)
else
rightLabel = right_node@split_feature
if(leftLabel == rightLabel) {
leftLabel = paste(leftLabel, "(L)")
rightLabel = paste(rightLabel, "(R)")
}
dtreeLeft = dtree$AddChild(leftLabel)
dtreeLeft$edgeLabel = leftEdgeLabel
dtreeLeft$type = ifelse(class(left_node)[1] == 'H2OSplitNode', 'split', 'leaf')
dtreeRight = dtree$AddChild(rightLabel)
dtreeRight$edgeLabel = rightEdgeLabel
dtreeRight$type = ifelse(class(right_node)[1] == 'H2OSplitNode', 'split', 'leaf')
addChildren(dtreeLeft, left_node)
addChildren(dtreeRight, right_node)
return(FALSE)
}
printValues <- function(values, is_na_direction, n=4) {
l = length(values)
if(l == 0)
value_string = ifelse(is_na_direction, "NA", "")
else
value_string = paste0(paste0(values[1:min(n,l)], collapse = ', '),
ifelse(l > n, ",...", ""),
ifelse(is_na_direction, ", NA", ""))
return(value_string)
}
```
This decision tree, also supplied as PDF, is meant to help build intuition about how the model.
```{r decision_tree_h2o, cache=TRUE}
library(DiagrammeR)
# customized DT for our H2O model
maternal_mu2DataTree = createDataTree(maternal_Tree)
GetEdgeLabel <- function(node) {return (node$edgeLabel)}
GetNodeShape <- function(node) {switch(node$type,
split = "diamond", leaf = "oval")}
GetFontName <- function(node) {switch(node$type,
split = 'Palatino-bold',
leaf = 'Palatino')}
SetEdgeStyle(maternal_mu2DataTree, fontname = 'Palatino-italic',
label = GetEdgeLabel, labelfloat = TRUE,
fontsize = "26", fontcolor='royalblue4')
SetNodeStyle(maternal_mu2DataTree, fontname = GetFontName, shape = GetNodeShape,
fontsize = "26", fontcolor='royalblue4',
height="0.75", width="1")
SetGraphStyle(maternal_mu2DataTree, rankdir = "LR", dpi=70.)
plot(maternal_mu2DataTree, output = "graph")
```
```{r generate h2o explanation of the DT model, cache=TRUE}
ptm<-proc.time()
exp_dt<-h2o.explain(maternal_dt_model,valid)
proc.time()-ptm
```
```{r show the explanation, cache=TRUE}
exp_dt
```
## Using **Naïve Bayes Classifier**
```{r Naïve Bayes Classifier, cache=TRUE}
# Build and train the model:
mo2b_nb <- h2o.naiveBayes(x = predictors,
y = response,
training_frame = train,
laplace = 0,
nfolds = 10,
seed = 1234)
# Eval performance:
perf <- h2o.performance(mo2b_nb)
# Generate the predictions on a test set (if necessary):
pred <- h2o.predict(mo2b_nb, newdata = valid)
```
```{r bayes_performance, cache=TRUE}
perf
```
NB model achieves AUC: 0.9259393 and AUCPR: 0.5121705
```{r explain naive bayes model, cache=TRUE}
# best viewed in a new window or see, please, the PDF included with the submission
exp_nb <- h2o.explain(mo2b_nb,valid)
```
Note the highly variable partial importance of the different socio-demographic characteristics
```{r vuz_nb_performance, cache=TRUE}
exp_nb
```
## Extending the ML toolbox: Using h2o AutoML mode to find an objectively best performing model
Compare [here](http://h2o-release.s3.amazonaws.com/h2o/rel-yates/1/docs-website/h2o-docs/automl.html#code-examples). The findings are to be interpreted with caution at this stage. Once we obtain a larger external dataset for validation, with a more balanced case distribution, this will become more useful and allow building an inference engine that could be deployed for use. I am presenting this code therefore as a reference for future work.
Nevertheless, it is evident that an optimization even at this stage results in a classification prediction performance of AUROC = 0.9937349. This result can vary depending on the run.
Note please, this code runs for about 70 min on a well-equipped deep learning workstation.
### Train in AutoML mode
```{r auto_ml, cache=TRUE}
ptm<-proc.time()
maternal_aml <- h2o.automl(x=predictors,y=response,training_frame = train, max_models = 20, seed = 1)
maternal_lb <- maternal_aml@leaderboard
#print(maternal_lb, n = nrow(maternal_lb)) #Print all rows instead of default 6 rows
proc.time()-ptm
```
### Validate the combined leader aml model
```{r validate_aml, cache=TRUE}
ptm<-proc.time()
maternal_perf_valid <- h2o.performance(maternal_aml@leader,newdata=valid,xval=FALSE,valid=TRUE)
pred <- h2o.predict(maternal_aml@leader, valid)
```
```{r}
h2o.auc(maternal_aml@leader, cache=TRUE)
```
[`Explain the model`](https://docs.h2o.ai/h2o/latest-stable/h2o-docs/explain.html)
We observe no specificity because the dataset is unbalanced such that by luck of draw (when the dataset is split 80:20) we get no true positives.
```{r explain_best_model, cache=TRUE}
ptm<-proc.time()
exp <-h2o.explain(maternal_aml@leader, valid)
proc.time()-ptm
```
```{r, cache=TRUE}
print(exp)
```
```{r}
sessionInfo()
```