-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_method.py
221 lines (192 loc) · 10.1 KB
/
run_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import datetime
import os
import pickle
import random
import sys
import numpy as np
import matplotlib.pyplot as plt
from acs.objective import fitness, multi_fitness
from acs.instance import Instance
from utils.multiobjective import fitness_sch
from utils.misc import evaluate_population_fixed, evaluate_population_random
from utils.runner import run_method, run_multiobjective_method
from algorithms.ppa_d.main import prey_predator_algorithm_discrete
from algorithms.ppa_c.main import prey_predator_algorithm_continuous
from algorithms.pso.main import particle_swarm_optmization
from algorithms.ga.main import genetic_algorithm
from algorithms.de.main import differential_evolution
from algorithms.nsga_ii.main import nsga_ii
import algorithms.ppa_d.config as ppa_d_config
import algorithms.ppa_c.config as ppa_c_config
import algorithms.pso.config as pso_config
import algorithms.ga.config as ga_config
import algorithms.de.config as de_config
import algorithms.nsga_ii.config as nsga_ii_config
def create_base_parser(parser):
parser.add_argument('config_id')
parser.add_argument('instance_id')
parser.add_argument('seed', type=int)
parser.add_argument('instance_file')
parser.add_argument('--config')
parser.add_argument('-p', '--population', type=int)
parser.add_argument('-r', '--repetitions', type=int, default=1)
parser.add_argument('-b', '--cost-budget', type=int)
parser.add_argument('-s', '--max-stagnation', type=int)
parser.add_argument('-i', '--num-iterations', type=int)
parser.add_argument('--show', action='store_true')
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('-n', '--results-name', default='results/comparison.pickle')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(title='algorithm', dest='algorithm')
subparsers.required = True
config_class_dict = {
'ga': ga_config.Config,
'nsga_ii': nsga_ii_config.Config,
'pso': pso_config.Config,
'ppa_d': ppa_d_config.Config,
'ppa_c': ppa_c_config.Config,
'de': de_config.Config,
}
parser_ga = subparsers.add_parser('ga')
create_base_parser(parser_ga)
parser_ga.add_argument('--mutation-chance', type=float)
parser_ga.add_argument('--top', type=float)
parser_ga.add_argument('--bottom', type=float)
parser_ga.add_argument('-d', '--copying', choices=['ELITISM', 'PERMISSIVE', 'NO'])
parser_ga.add_argument('-f', '--selection', choices=['RANDOM', 'ROULETTE'])
parser_ga.add_argument('-c', '--crossover', choices=['SINGLE_POINT', 'TWO_POINT', 'THREE_PARENT', 'UNIFORM'])
parser_ga.add_argument('-m', '--mutation', choices=['SINGLE_BIT_INVERSION', 'MULTI_BIT_INVERSION'])
parser_nsga_ii = subparsers.add_parser('nsga_ii')
create_base_parser(parser_nsga_ii)
parser_nsga_ii.add_argument('--mutation-chance', type=float)
parser_nsga_ii.add_argument('-c', '--crossover', choices=['SINGLE_POINT', 'TWO_POINT', 'THREE_PARENT', 'UNIFORM'])
parser_nsga_ii.add_argument('-m', '--mutation', choices=['SINGLE_BIT_INVERSION', 'MULTI_BIT_INVERSION'])
parser_nsga_ii.add_argument('-o', '--num-objectives', type=int, default=2)
parser_pso = subparsers.add_parser('pso')
create_base_parser(parser_pso)
parser_pso.add_argument('-m', '--max-velocity', type=float)
parser_pso.add_argument('-t', '--inertia', type=float)
parser_pso.add_argument('-l', '--local-influence', type=float)
parser_pso.add_argument('-g', '--global-influence', type=float)
parser_pso.add_argument('-a', '--evaluator', choices=['RANDOM', 'FIXED'])
parser_ppa_d = subparsers.add_parser('ppa_d')
create_base_parser(parser_ppa_d)
parser_ppa_d.add_argument('-d', '--distance-influence', type=float)
parser_ppa_d.add_argument('-f', '--survival-influence', type=float)
parser_ppa_d.add_argument('-t', '--min-steps', type=int)
parser_ppa_d.add_argument('-x', '--max-steps', type=int)
parser_ppa_d.add_argument('-e', '--steps-distance', type=float)
parser_ppa_d.add_argument('-l', '--local-search', type=int)
parser_ppa_d.add_argument('-c', '--follow-chance', type=float)
parser_ppa_c = subparsers.add_parser('ppa_c')
create_base_parser(parser_ppa_c)
parser_ppa_c.add_argument('-m', '--max-velocity', type=float)
parser_ppa_c.add_argument('-d', '--distance-influence', type=float)
parser_ppa_c.add_argument('-f', '--survival-influence', type=float)
parser_ppa_c.add_argument('-t', '--min-steps', type=int)
parser_ppa_c.add_argument('-x', '--max-steps', type=int)
parser_ppa_c.add_argument('-e', '--steps-distance', type=float)
parser_ppa_c.add_argument('-l', '--local-search', type=int)
parser_ppa_c.add_argument('-c', '--follow-chance', type=float)
parser_ppa_c.add_argument('-a', '--evaluator', choices=['RANDOM', 'FIXED'])
parser_de = subparsers.add_parser('de')
create_base_parser(parser_de)
parser_de.add_argument('-m', '--max-velocity', type=float)
parser_de.add_argument('--mutation-chance', type=float)
parser_de.add_argument('-c', '--crossover-rate', type=float)
parser_de.add_argument('-a', '--evaluator', choices=['RANDOM', 'FIXED'])
args = parser.parse_args()
if not args.config and not args.cost_budget and not args.max_stagnation and not args.num_iterations:
raise Exception("No end condition specified. Use '-b', '-s' or '-i'.")
if args.algorithm == 'nsga_ii' and args.num_objectives > 5:
raise Exception("The problem can only have at most five objectives")
instance = Instance.load_from_file(args.instance_file)
config_class = config_class_dict[args.algorithm]
if args.config:
config = config_class.load_from_file(args.config)
else:
config = config_class()
config.update_from_args(args)
results = {
'info': {
'command': os.path.basename(sys.argv[0]) + " " + " ".join(sys.argv[1:]),
'datetime': str(datetime.datetime.now()),
'instance': instance,
'config_id': args.config_id,
'instance_id': args.instance_id,
'seed': args.seed,
'config': config,
'results_name': args.results_name,
'algorithm': args.algorithm,
},
}
if args.algorithm == 'ppa_d':
results['info']['multiobjective'] = False
label = 'PPAB'
results['data'] = run_method(prey_predator_algorithm_discrete, fitness, instance, config, args.repetitions, verbose=args.verbose, seed=args.seed, result_format='full')
elif args.algorithm == 'ppa_c':
results['info']['multiobjective'] = False
label = 'PPAC'
results['data'] = run_method(prey_predator_algorithm_continuous, fitness, instance, config, args.repetitions, verbose=args.verbose, seed=args.seed, result_format='full')
elif args.algorithm == 'pso':
results['info']['multiobjective'] = False
label = 'PSO'
results['data'] = run_method(particle_swarm_optmization, fitness, instance, config, args.repetitions, verbose=args.verbose, seed=args.seed, result_format='full')
elif args.algorithm == 'ga':
results['info']['multiobjective'] = False
label = 'GA'
results['data'] = run_method(genetic_algorithm, fitness, instance, config, args.repetitions, verbose=args.verbose, seed=args.seed, result_format='full')
elif args.algorithm == 'de':
results['info']['multiobjective'] = False
label = 'DE'
results['data'] = run_method(differential_evolution, fitness, instance, config, args.repetitions, verbose=args.verbose, seed=args.seed, result_format='full')
elif args.algorithm == 'nsga_ii':
results['info']['multiobjective'] = True
results['info']['num_objectives'] = args.num_objectives
label = 'NSGA-II'
# instance.num_learners = 1
results['data'] = run_multiobjective_method(nsga_ii, multi_fitness, instance, config, args.repetitions, verbose=args.verbose, num_objectives=args.num_objectives, seed=args.seed, result_format='full')
# instance.num_materials = 20
# results = run_multiobjective_method(nsga_ii, fitness_sch, instance, config, args.repetitions, num_objectives=args.num_objectives, seed=args.seed, result_format='full')
os.makedirs(os.path.dirname(args.results_name), exist_ok=True)
with open(args.results_name, 'wb') as file:
pickle.dump(results, file)
# mean_best_fitness = np.mean(results[2], axis=(0, 1))
# mean_partial_fitness = np.mean(results[3], axis=(0, 1))
#
# print(mean_best_fitness[-1])
#
# if args.show:
# fig = plt.figure()
# fig.suptitle('%s: best fitness' % label)
# plt.plot(results[1], mean_best_fitness, label=label)
# plt.legend(loc=1)
# plt.show()
# if args.show:
# fig = plt.figure()
# fig.suptitle('%s: best fitness' % label)
# plt.plot(results[0], mean_best_fitness, label="Total")
# plt.plot(results[0], mean_partial_fitness[:, 0], label="Coverage")
# plt.plot(results[0], mean_partial_fitness[:, 1], label="Difficulty")
# plt.plot(results[0], mean_partial_fitness[:, 2], label="Time")
# plt.plot(results[0], mean_partial_fitness[:, 3], label="Balance")
# plt.plot(results[0], mean_partial_fitness[:, 4], label="Style")
# plt.legend(loc=1)
# plt.show()
# temp = results[3].mean(axis=0)
# for i in range(24):
# plt.xlabel('# execuções da função de avaliação')
# plt.ylabel('valor da avaliação')
# plt.ylim((-1, 7))
# plt.plot(results[1], temp[i, :, 0], color='#377eb8', label="Cobertura")
# plt.plot(results[1], temp[i, :, 1], color='#ff7f00', label="Dificuldade")
# plt.plot(results[1], temp[i, :, 2], color='#4daf4a', label="Tempo")
# plt.plot(results[1], temp[i, :, 3], color='#f781bf', label="Balanceamento")
# plt.plot(results[1], temp[i, :, 4], color='#a65628', label="Estilo")
# plt.legend(loc=1)
# # plt.show()
# # plt.savefig('results/de_partial_all.png')
# plt.savefig('results/de_partial_%d.png' % i)
# plt.close()