@@ -41,16 +41,16 @@ Local Open Scope classical_set_scope.
4141Local Open Scope ring_scope.
4242Local Open Scope ereal_scope.
4343
44- (* TODO: PR *)
45- Lemma emeasurable_itv1 (R : realType) (i : nat ) :
46- measurable (`[(i%:R)%:E, (i.+1%:R)%:E[ %classic : set \bar R).
44+ (* PR in progress *)
45+ Lemma emeasurable_itv (R : realType) (i : interval (\bar R) ) :
46+ measurable ([set` i] %classic : set \bar R).
4747Proof .
48- rewrite -[X in measurable X]setCK.
49- apply: measurableC.
50- rewrite set_interval.setCitv /=.
51- apply: measurableU.
48+ rewrite -[X in measurable X]setCK; apply: measurableC.
49+ rewrite set_interval.setCitv /=; apply: measurableU => [|].
50+ - move: i => [[b1 i1|[|]] i2] /=; rewrite ?set_interval.set_itvE//.
5251 exact: emeasurable_itv_ninfty_bnd.
53- exact: emeasurable_itv_bnd_pinfty.
52+ - move: i => [i1 [b2 i2|[|]]] /=; rewrite ?set_interval.set_itvE//.
53+ exact: emeasurable_itv_bnd_pinfty.
5454Qed .
5555
5656Section sfinite_fubini.
@@ -68,7 +68,7 @@ pose s2 := sfinite_measure_seq m2.
6868rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first.
6969 by move=> A mA _; rewrite /=; exact: sfinite_measure_seqP.
7070transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
71- apply eq_integral => x _; apply: eq_measure_integral => ? ? _.
71+ apply: eq_integral => x _; apply: eq_measure_integral => ? ? _.
7272 exact: sfinite_measure_seqP.
7373transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
7474 rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
@@ -79,29 +79,29 @@ transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
7979 by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
8080 apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0.
8181 by move=> k; apply: measurable_fun_fubini_tonelli_F.
82- apply: eq_eseries => n _; apply eq_integral => x _.
82+ apply: eq_eseriesr => n _; apply: eq_integral => x _.
8383 by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
8484transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
85- apply eq_eseries => n _; rewrite integral_nneseries//.
85+ apply: eq_eseriesr => n _; rewrite integral_nneseries//.
8686 by move=> m; exact: measurable_fun_fubini_tonelli_F.
8787 by move=> m x _; exact: integral_ge0.
8888transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
89- apply eq_eseries => n _; apply eq_eseries => m _.
89+ apply: eq_eseriesr => n _; apply: eq_eseriesr => m _.
9090 by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
9191transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
92- apply eq_eseries => n _; rewrite ge0_integral_measure_series//.
92+ apply: eq_eseriesr => n _; rewrite ge0_integral_measure_series//.
9393 by move=> y _; exact: integral_ge0.
9494 exact: measurable_fun_fubini_tonelli_G.
9595transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
9696 rewrite integral_nneseries//.
9797 by move=> n; apply: measurable_fun_fubini_tonelli_G.
9898 by move=> n y _; exact: integral_ge0.
9999transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
100- apply eq_integral => y _.
100+ apply: eq_integral => y _.
101101 by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2.
102102transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
103- by apply eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
104- apply eq_integral => y _; apply eq_measure_integral => A mA _ /=.
103+ by apply: eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
104+ apply: eq_integral => y _; apply: eq_measure_integral => A mA _ /=.
105105by rewrite sfinite_measure_seqP.
106106Qed .
107107
@@ -256,7 +256,7 @@ exists (fun n => if n is O then [the _.-ker _ ~> _ of k] else
256256 by case => [|_]; [exact: measure_uub|exact: kzero_uub].
257257move=> t U mU/=; rewrite /mseries.
258258rewrite (nneseries_split 1%N)// big_ord_recl/= big_ord0 adde0.
259- rewrite ereal_series (@eq_eseries _ _ (fun=> 0%E)); last by case.
259+ rewrite ereal_series (@eq_eseriesr _ _ (fun=> 0%E)); last by case.
260260by rewrite eseries0// adde0.
261261Qed .
262262
@@ -299,7 +299,7 @@ End sfinite.
299299
300300Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
301301 (R : realType) (k : R.-sfker Z ~> X) (z : Z) :
302- sfinite_measure_def (k z).
302+ sfinite_measure (k z).
303303Proof .
304304have [s ks] := sfinite k.
305305exists (s ^~ z).
@@ -715,7 +715,7 @@ exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
715715 by rewrite /msum !big_ord_recr/= big_ord0 add0e EFinD lte_add.
716716move=> x U mU.
717717rewrite /kadd/= -/(measure_add (k1 x) (k2 x)) measure_addE hk1//= hk2//=.
718- rewrite /mseries -nneseriesD//; apply: eq_eseries => n _ /=.
718+ rewrite /mseries -nneseriesD//; apply: eq_eseriesr => n _ /=.
719719by rewrite -/(measure_add (f1 n x) (f2 n x)) measure_addE.
720720Qed .
721721
@@ -997,7 +997,7 @@ transitivity (([the _.-ker _ ~> _ of kseries l_] \; [the _.-ker _ ~> _ of kserie
997997rewrite /= /kcomp/= integral_nneseries//=; last first.
998998 by move=> n; have /measurable_fun_prod1 := measurable_kernel (k_ n) _ mU; exact.
999999transitivity (\sum_(i <oo) \sum_(j <oo) (l_ j \; k_ i) x U).
1000- apply: eq_eseries => i _; rewrite integral_kseries//.
1000+ apply: eq_eseriesr => i _; rewrite integral_kseries//.
10011001 by have /measurable_fun_prod1 := measurable_kernel (k_ i) _ mU; exact.
10021002rewrite /mseries -hkl/=.
10031003rewrite (_ : setT = setT `*`` (fun=> setT)); last by apply/seteqP; split.
@@ -1099,7 +1099,7 @@ Let integral_kcomp_indic x E (mE : measurable E) :
10991099 \int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
11001100Proof .
11011101rewrite integral_indic//= /kcomp.
1102- by apply eq_integral => y _; rewrite integral_indic.
1102+ by apply: eq_integral => y _; rewrite integral_indic.
11031103Qed .
11041104
11051105Let integral_kcomp_nnsfun x (f : {nnsfun Z >-> R}) :
@@ -1142,7 +1142,7 @@ have [r0|r0] := leP 0%R r.
11421142 rewrite ge0_integralM//; last first.
11431143 have := measurable_kernel k (f @^-1` [set r]) (measurable_sfunP f (measurable_set1 r)).
11441144 by move/measurable_fun_prod1; exact.
1145- by congr (_ * _); apply eq_integral => y _; rewrite integral_indic// setIT.
1145+ by congr (_ * _); apply: eq_integral => y _; rewrite integral_indic// setIT.
11461146rewrite integral0_eq ?mule0; last first.
11471147 by move=> y _; rewrite integral0_eq// => z _; rewrite preimage_nnfun0// indic0.
11481148by rewrite integral0_eq// => y _; rewrite preimage_nnfun0// measure0 mule0.
@@ -1169,18 +1169,18 @@ transitivity (\int[l x]_y lim (fun n => \int[k (x, y)]_z (f_ n z)%:E)).
11691169 by move=> /measurable_fun_prod1; exact.
11701170 + by move=> z; rewrite lee_fin.
11711171 + exact/EFin_measurable_fun.
1172- - by move=> n y _; apply integral_ge0 => // z _; rewrite lee_fin.
1172+ - by move=> n y _; apply: integral_ge0 => // z _; rewrite lee_fin.
11731173 - move=> y _ a b ab; apply: ge0_le_integral => //.
11741174 + by move=> z _; rewrite lee_fin.
11751175 + exact/EFin_measurable_fun.
11761176 + by move=> z _; rewrite lee_fin.
11771177 + exact/EFin_measurable_fun.
11781178 + by move: ab => /ndf_ /lefP ab z _; rewrite lee_fin.
1179- apply eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
1179+ apply: eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
11801180 - by move=> n; exact/EFin_measurable_fun.
11811181 - by move=> n z _; rewrite lee_fin.
11821182 - by move=> z _ a b /ndf_ /lefP; rewrite lee_fin.
1183- by apply eq_integral => z _; apply/cvg_lim => //; exact: f_f.
1183+ by apply: eq_integral => z _; apply/cvg_lim => //; exact: f_f.
11841184Qed .
11851185
11861186End integral_kcomp.
0 commit comments