@@ -160,17 +160,15 @@ End measure_fam_uub.
160160HB.mixin Record Kernel_isSFinite_subdef d d'
161161 (X : measurableType d) (Y : measurableType d') (R : realType)
162162 (k : X -> {measure set Y -> \bar R}) := {
163- sfinite_subdef : exists2 s : (R.-ker X ~> Y)^nat,
163+ sfinite_kernel_subdef : exists2 s : (R.-ker X ~> Y)^nat,
164164 forall n, measure_fam_uub (s n) &
165165 forall x U, measurable U -> k x U = kseries s x U }.
166166
167- #[short(type=sfinite_kernel)]
168167HB.structure Definition SFiniteKernel d d'
169168 (X : measurableType d) (Y : measurableType d') (R : realType) :=
170169 { k of @Kernel _ _ _ _ R k & Kernel_isSFinite_subdef _ _ X Y R k }.
171- Notation "R .-sfker X ~> Y" := (sfinite_kernel X Y R).
172-
173- Arguments sfinite_subdef {_ _ _ _ _} _.
170+ Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R).
171+ Arguments sfinite_kernel_subdef {_ _ _ _ _} _.
174172
175173Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d')
176174 (R : realType) (k1 k2 : R.-sfker T ~> T') :
@@ -221,7 +219,7 @@ End kzero.
221219HB.builders Context d d' (X : measurableType d) (Y : measurableType d')
222220 (R : realType) k of Kernel_isFinite d d' X Y R k.
223221
224- Lemma sfinite_finite :
222+ Let sfinite_finite :
225223 exists2 k_ : (R.-ker _ ~> _)^nat, forall n, measure_fam_uub (k_ n) &
226224 forall x U, measurable U -> k x U = mseries (k_ ^~ x) 0 U.
227225Proof .
@@ -247,7 +245,7 @@ Context d d' (X : measurableType d) (Y : measurableType d').
247245Variables (R : realType) (k : R.-sfker X ~> Y).
248246
249247Let s : (X -> {measure set Y -> \bar R})^nat :=
250- let : exist2 x _ _ := cid2 (sfinite_subdef k) in x.
248+ let : exist2 x _ _ := cid2 (sfinite_kernel_subdef k) in x.
251249
252250Let ms n : @isKernel d d' X Y R (s n).
253251Proof .
@@ -262,7 +260,7 @@ Proof. by rewrite /s; case: cid2. Qed.
262260
263261HB.instance Definition _ n := @Kernel_isFinite.Build d d' X Y R (s n) (s_uub n).
264262
265- Lemma sfinite : exists s : (R.-fker X ~> Y)^nat,
263+ Lemma sfinite_kernel : exists s : (R.-fker X ~> Y)^nat,
266264 forall x U, measurable U -> k x U = kseries s x U.
267265Proof .
268266exists (fun n => [the _.-fker _ ~> _ of s n]) => x U mU.
@@ -275,7 +273,7 @@ Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
275273 (R : realType) (k : R.-sfker Z ~> X) (z : Z) :
276274 sfinite_measure (k z).
277275Proof .
278- have [s ks] := sfinite k.
276+ have [s ks] := sfinite_kernel k.
279277exists (s ^~ z).
280278 move=> n; have [r snr] := measure_uub (s n).
281279 by apply: lty_fin_num_fun; rewrite (lt_le_trans (snr _))// leey.
@@ -545,7 +543,7 @@ Lemma measurable_fun_integral_sfinite_kernel (l : R.-sfker X ~> Y)
545543Proof .
546544have [k_ [ndk_ k_k]] := approximation measurableT mk (fun xy _ => k0 xy).
547545apply: (measurable_fun_xsection_integral ndk_ (k_k ^~ Logic.I)) => n r.
548- have [l_ hl_] := sfinite l.
546+ have [l_ hl_] := sfinite_kernel l.
549547rewrite (_ : (fun x => _) = (fun x =>
550548 mseries (l_ ^~ x) 0 (xsection (k_ n @^-1` [set r]) x))); last first.
551549 by apply/funext => x; rewrite hl_//; exact/measurable_xsection.
@@ -683,7 +681,7 @@ Let sfinite_kadd : exists2 k_ : (R.-ker _ ~> _)^nat,
683681 forall x U, measurable U ->
684682 kadd k1 k2 x U = mseries (k_ ^~ x) 0 U.
685683Proof .
686- have [f1 hk1] := sfinite k1; have [f2 hk2] := sfinite k2.
684+ have [f1 hk1] := sfinite_kernel k1; have [f2 hk2] := sfinite_kernel k2.
687685exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
688686 move=> n.
689687 have [r1 f1r1] := measure_uub (f1 n).
@@ -954,7 +952,7 @@ Import KCOMP_FINITE_KERNEL.
954952Lemma mkcomp_sfinite : exists k_ : (R.-fker X ~> Z)^nat,
955953 forall x U, measurable U -> (l \; k) x U = kseries k_ x U.
956954Proof .
957- have [k_ hk_] := sfinite k; have [l_ hl_] := sfinite l.
955+ have [k_ hk_] := sfinite_kernel k; have [l_ hl_] := sfinite_kernel l.
958956have [kl hkl] : exists kl : (R.-fker X ~> Z) ^nat, forall x U,
959957 \esum_(i in setT) (l_ i.2 \; k_ i.1) x U = \sum_(i <oo) kl i x U.
960958 have /ppcard_eqP[f] : ([set: nat] #= [set: nat * nat])%card.
0 commit comments