Skip to content

Commit 92d12dc

Browse files
committed
sfinite -> sfinite_kernel (to match sfinite_measure)
1 parent eb9f2ea commit 92d12dc

File tree

2 files changed

+12
-14
lines changed

2 files changed

+12
-14
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@
99
`prob_pointed`, `mset`, `pset`, `pprobability`, `kprobability`, `kadd`,
1010
`mnormalize`, `knormalize`, `kcomp`, and `mkcomp`.
1111
+ new lemmas `eq_kernel`, `measurable_fun_kseries`, `integral_kseries`,
12-
`measure_fam_uubP`, `eq_sfkernel`, `kzero_uub`, `sfinite_finite`,
13-
`sfinite`, `sfinite_kernel_measure`, `finite_kernel_measure`,
12+
`measure_fam_uubP`, `eq_sfkernel`, `kzero_uub`,
13+
`sfinite_kernel`, `sfinite_kernel_measure`, `finite_kernel_measure`,
1414
`measurable_prod_subset_xsection_kernel`,
1515
`measurable_fun_xsection_finite_kernel`,
1616
`measurable_fun_xsection_integral`,

theories/kernel.v

Lines changed: 10 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -160,17 +160,15 @@ End measure_fam_uub.
160160
HB.mixin Record Kernel_isSFinite_subdef d d'
161161
(X : measurableType d) (Y : measurableType d') (R : realType)
162162
(k : X -> {measure set Y -> \bar R}) := {
163-
sfinite_subdef : exists2 s : (R.-ker X ~> Y)^nat,
163+
sfinite_kernel_subdef : exists2 s : (R.-ker X ~> Y)^nat,
164164
forall n, measure_fam_uub (s n) &
165165
forall x U, measurable U -> k x U = kseries s x U }.
166166

167-
#[short(type=sfinite_kernel)]
168167
HB.structure Definition SFiniteKernel d d'
169168
(X : measurableType d) (Y : measurableType d') (R : realType) :=
170169
{ k of @Kernel _ _ _ _ R k & Kernel_isSFinite_subdef _ _ X Y R k }.
171-
Notation "R .-sfker X ~> Y" := (sfinite_kernel X Y R).
172-
173-
Arguments sfinite_subdef {_ _ _ _ _} _.
170+
Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R).
171+
Arguments sfinite_kernel_subdef {_ _ _ _ _} _.
174172

175173
Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d')
176174
(R : realType) (k1 k2 : R.-sfker T ~> T') :
@@ -221,7 +219,7 @@ End kzero.
221219
HB.builders Context d d' (X : measurableType d) (Y : measurableType d')
222220
(R : realType) k of Kernel_isFinite d d' X Y R k.
223221

224-
Lemma sfinite_finite :
222+
Let sfinite_finite :
225223
exists2 k_ : (R.-ker _ ~> _)^nat, forall n, measure_fam_uub (k_ n) &
226224
forall x U, measurable U -> k x U = mseries (k_ ^~ x) 0 U.
227225
Proof.
@@ -247,7 +245,7 @@ Context d d' (X : measurableType d) (Y : measurableType d').
247245
Variables (R : realType) (k : R.-sfker X ~> Y).
248246

249247
Let s : (X -> {measure set Y -> \bar R})^nat :=
250-
let: exist2 x _ _ := cid2 (sfinite_subdef k) in x.
248+
let: exist2 x _ _ := cid2 (sfinite_kernel_subdef k) in x.
251249

252250
Let ms n : @isKernel d d' X Y R (s n).
253251
Proof.
@@ -262,7 +260,7 @@ Proof. by rewrite /s; case: cid2. Qed.
262260

263261
HB.instance Definition _ n := @Kernel_isFinite.Build d d' X Y R (s n) (s_uub n).
264262

265-
Lemma sfinite : exists s : (R.-fker X ~> Y)^nat,
263+
Lemma sfinite_kernel : exists s : (R.-fker X ~> Y)^nat,
266264
forall x U, measurable U -> k x U = kseries s x U.
267265
Proof.
268266
exists (fun n => [the _.-fker _ ~> _ of s n]) => x U mU.
@@ -275,7 +273,7 @@ Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
275273
(R : realType) (k : R.-sfker Z ~> X) (z : Z) :
276274
sfinite_measure (k z).
277275
Proof.
278-
have [s ks] := sfinite k.
276+
have [s ks] := sfinite_kernel k.
279277
exists (s ^~ z).
280278
move=> n; have [r snr] := measure_uub (s n).
281279
by apply: lty_fin_num_fun; rewrite (lt_le_trans (snr _))// leey.
@@ -545,7 +543,7 @@ Lemma measurable_fun_integral_sfinite_kernel (l : R.-sfker X ~> Y)
545543
Proof.
546544
have [k_ [ndk_ k_k]] := approximation measurableT mk (fun xy _ => k0 xy).
547545
apply: (measurable_fun_xsection_integral ndk_ (k_k ^~ Logic.I)) => n r.
548-
have [l_ hl_] := sfinite l.
546+
have [l_ hl_] := sfinite_kernel l.
549547
rewrite (_ : (fun x => _) = (fun x =>
550548
mseries (l_ ^~ x) 0 (xsection (k_ n @^-1` [set r]) x))); last first.
551549
by apply/funext => x; rewrite hl_//; exact/measurable_xsection.
@@ -683,7 +681,7 @@ Let sfinite_kadd : exists2 k_ : (R.-ker _ ~> _)^nat,
683681
forall x U, measurable U ->
684682
kadd k1 k2 x U = mseries (k_ ^~ x) 0 U.
685683
Proof.
686-
have [f1 hk1] := sfinite k1; have [f2 hk2] := sfinite k2.
684+
have [f1 hk1] := sfinite_kernel k1; have [f2 hk2] := sfinite_kernel k2.
687685
exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
688686
move=> n.
689687
have [r1 f1r1] := measure_uub (f1 n).
@@ -954,7 +952,7 @@ Import KCOMP_FINITE_KERNEL.
954952
Lemma mkcomp_sfinite : exists k_ : (R.-fker X ~> Z)^nat,
955953
forall x U, measurable U -> (l \; k) x U = kseries k_ x U.
956954
Proof.
957-
have [k_ hk_] := sfinite k; have [l_ hl_] := sfinite l.
955+
have [k_ hk_] := sfinite_kernel k; have [l_ hl_] := sfinite_kernel l.
958956
have [kl hkl] : exists kl : (R.-fker X ~> Z) ^nat, forall x U,
959957
\esum_(i in setT) (l_ i.2 \; k_ i.1) x U = \sum_(i <oo) kl i x U.
960958
have /ppcard_eqP[f] : ([set: nat] #= [set: nat * nat])%card.

0 commit comments

Comments
 (0)