Skip to content

Commit e1d959c

Browse files
affeldt-aistproux01
authored andcommitted
simplify proof script, %type in notations
1 parent 2a479b4 commit e1d959c

File tree

3 files changed

+21
-21
lines changed

3 files changed

+21
-21
lines changed

theories/kernel.v

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ HB.mixin Record isKernel d d' (X : measurableType d) (Y : measurableType d')
7474
HB.structure Definition Kernel d d'
7575
(X : measurableType d) (Y : measurableType d') (R : realType) :=
7676
{ k & isKernel _ _ X Y R k }.
77-
Notation "R .-ker X ~> Y" := (kernel X Y R).
77+
Notation "R .-ker X ~> Y" := (kernel X%type Y R).
7878

7979
Arguments measurable_kernel {_ _ _ _ _} _.
8080

@@ -177,7 +177,7 @@ HB.structure Definition SFiniteKernel d d'
177177
(X : measurableType d) (Y : measurableType d') (R : realType) :=
178178
{ k of @Kernel _ _ _ _ R k &
179179
Kernel_isSFinite_subdef _ _ X Y R k }.
180-
Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R).
180+
Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X%type Y R).
181181
Arguments sfinite_kernel_subdef {_ _ _ _ _} _.
182182

183183
Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d')
@@ -200,7 +200,7 @@ HB.structure Definition FiniteKernel d d'
200200
(X : measurableType d) (Y : measurableType d') (R : realType) :=
201201
{ k of @SFiniteKernel _ _ _ _ _ k &
202202
SFiniteKernel_isFinite _ _ X Y R k }.
203-
Notation "R .-fker X ~> Y" := (finite_kernel X Y R).
203+
Notation "R .-fker X ~> Y" := (finite_kernel X%type Y R).
204204
Arguments measure_uub {_ _ _ _ _} _.
205205

206206
HB.factory Record Kernel_isFinite d d'
@@ -356,7 +356,7 @@ HB.structure Definition SubProbabilityKernel
356356
d d' (X : measurableType d) (Y : measurableType d') (R : realType) :=
357357
{ k of @FiniteKernel _ _ _ _ _ k &
358358
FiniteKernel_isSubProbability _ _ X Y R k }.
359-
Notation "R .-spker X ~> Y" := (sprobability_kernel X Y R).
359+
Notation "R .-spker X ~> Y" := (sprobability_kernel X%type Y R).
360360

361361
HB.factory Record Kernel_isSubProbability d d'
362362
(X : measurableType d) (Y : measurableType d') (R : realType)
@@ -389,7 +389,7 @@ HB.structure Definition ProbabilityKernel d d'
389389
(X : measurableType d) (Y : measurableType d') (R : realType) :=
390390
{ k of @SubProbabilityKernel _ _ _ _ _ k &
391391
SubProbability_isProbability _ _ X Y R k }.
392-
Notation "R .-pker X ~> Y" := (probability_kernel X Y R).
392+
Notation "R .-pker X ~> Y" := (probability_kernel X%type Y R).
393393

394394
HB.factory Record Kernel_isProbability d d'
395395
(X : measurableType d) (Y : measurableType d') (R : realType)
@@ -507,7 +507,7 @@ Variable k : X * Y -> \bar R.
507507

508508
Lemma measurable_fun_xsection_integral
509509
(l : X -> {measure set Y -> \bar R})
510-
(k_ : ({nnsfun [the measurableType _ of (X * Y)%type] >-> R})^nat)
510+
(k_ : ({nnsfun [the measurableType _ of X * Y] >-> R})^nat)
511511
(ndk_ : nondecreasing_seq (k_ : (X * Y -> R)^nat))
512512
(k_k : forall z, EFin \o (k_ ^~ z) --> k z) :
513513
(forall n r,
@@ -847,7 +847,7 @@ Section kcomp_is_measure.
847847
Context d1 d2 d3 (X : measurableType d1) (Y : measurableType d2)
848848
(Z : measurableType d3) (R : realType).
849849
Variable l : R.-ker X ~> Y.
850-
Variable k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z.
850+
Variable k : R.-ker [the measurableType _ of X * Y] ~> Z.
851851

852852
Local Notation "l \; k" := (kcomp l k).
853853

@@ -885,7 +885,7 @@ Module KCOMP_FINITE_KERNEL.
885885
Section kcomp_finite_kernel_kernel.
886886
Context d d' d3 (X : measurableType d) (Y : measurableType d')
887887
(Z : measurableType d3) (R : realType) (l : R.-fker X ~> Y)
888-
(k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z).
888+
(k : R.-ker [the measurableType _ of X * Y] ~> Z).
889889

890890
Lemma measurable_fun_kcomp_finite U :
891891
measurable U -> measurable_fun [set: X] ((l \; k) ^~ U).
@@ -903,7 +903,7 @@ Section kcomp_finite_kernel_finite.
903903
Context d d' d3 (X : measurableType d) (Y : measurableType d')
904904
(Z : measurableType d3) (R : realType).
905905
Variable l : R.-fker X ~> Y.
906-
Variable k : R.-fker [the measurableType _ of (X * Y)%type] ~> Z.
906+
Variable k : R.-fker [the measurableType _ of X * Y] ~> Z.
907907

908908
Let mkcomp_finite : measure_fam_uub (l \; k).
909909
Proof.
@@ -927,7 +927,7 @@ Section kcomp_sfinite_kernel.
927927
Context d d' d3 (X : measurableType d) (Y : measurableType d')
928928
(Z : measurableType d3) (R : realType).
929929
Variable l : R.-sfker X ~> Y.
930-
Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z.
930+
Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.
931931

932932
Import KCOMP_FINITE_KERNEL.
933933

@@ -973,7 +973,7 @@ Section kcomp_sfinite_kernel.
973973
Context d d' d3 (X : measurableType d) (Y : measurableType d')
974974
(Z : measurableType d3) (R : realType).
975975
Variable l : R.-sfker X ~> Y.
976-
Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z.
976+
Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.
977977

978978
HB.instance Definition _ :=
979979
isKernel.Build _ _ X Z R (l \; k) (measurable_fun_mkcomp_sfinite l k).
@@ -1047,7 +1047,7 @@ Section integral_kcomp.
10471047
Context d d2 d3 (X : measurableType d) (Y : measurableType d2)
10481048
(Z : measurableType d3) (R : realType).
10491049
Variables (l : R.-sfker X ~> Y)
1050-
(k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z).
1050+
(k : R.-sfker [the measurableType _ of X * Y] ~> Z).
10511051

10521052
Let integral_kcomp_indic x E (mE : measurable E) :
10531053
\int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).

theories/lebesgue_integral.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ Reserved Notation "{ 'nnsfun' aT >-> T }"
104104
(at level 0, format "{ 'nnsfun' aT >-> T }").
105105
Reserved Notation "[ 'nnsfun' 'of' f ]"
106106
(at level 0, format "[ 'nnsfun' 'of' f ]").
107-
Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT T) : form_scope.
107+
Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT%type T) : form_scope.
108108
Notation "[ 'nnsfun' 'of' f ]" := [the {nnsfun _ >-> _} of f] : form_scope.
109109

110110
Section mfun_pred.
@@ -4658,7 +4658,7 @@ Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
46584658
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
46594659

46604660
Lemma product_measure_unique
4661-
(m' : {measure set [the semiRingOfSetsType _ of (T1 * T2)%type] -> \bar R}) :
4661+
(m' : {measure set [the semiRingOfSetsType _ of T1 * T2] -> \bar R}) :
46624662
(forall A1 A2, measurable A1 -> measurable A2 ->
46634663
m' (A1 `*` A2) = m1 A1 * m2 A2) ->
46644664
forall X : set (T1 * T2), measurable X -> (m1 \x m2) X = m' X.

theories/measure.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1135,13 +1135,13 @@ Lemma measurable_fun_if (g h : T1 -> T2) D (mD : measurable D)
11351135
measurable_fun D (fun t => if f t then g t else h t).
11361136
Proof.
11371137
move=> mx my /= _ B mB; rewrite (_ : _ @^-1` B =
1138-
((f @^-1` [set true]) `&` (g @^-1` B) `&` (f @^-1` [set true])) `|`
1139-
((f @^-1` [set false]) `&` (h @^-1` B) `&` (f @^-1` [set false]))).
1138+
((f @^-1` [set true]) `&` (g @^-1` B)) `|`
1139+
((f @^-1` [set false]) `&` (h @^-1` B))).
11401140
rewrite setIUr; apply: measurableU.
1141-
- by rewrite setIAC setIid setIA; apply: mx => //; exact: mf.
1142-
- by rewrite setIAC setIid setIA; apply: my => //; exact: mf.
1143-
apply/seteqP; split=> [t /=| t]; first by case: ifPn => ft; [left|right].
1144-
by move=> /= [|]; case: ifPn => ft; case=> -[].
1141+
- by rewrite setIA; apply: mx => //; exact: mf.
1142+
- by rewrite setIA; apply: my => //; exact: mf.
1143+
apply/seteqP; split=> [t /=| t /= [] [] ->//].
1144+
by case: ifPn => ft; [left|right].
11451145
Qed.
11461146

11471147
Lemma measurable_fun_ifT (g h : T1 -> T2) (f : T1 -> bool)
@@ -1560,7 +1560,7 @@ HB.structure Definition Measure d (T : semiRingOfSetsType d)
15601560
(R : numFieldType) :=
15611561
{mu of Content_isMeasure d T R mu & Content d mu}.
15621562

1563-
Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T R)
1563+
Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T%type R)
15641564
(at level 36, T, R at next level,
15651565
format "{ 'measure' 'set' T '->' '\bar' R }") : ring_scope.
15661566

0 commit comments

Comments
 (0)