@@ -74,7 +74,7 @@ HB.mixin Record isKernel d d' (X : measurableType d) (Y : measurableType d')
7474HB.structure Definition Kernel d d'
7575 (X : measurableType d) (Y : measurableType d') (R : realType) :=
7676 { k & isKernel _ _ X Y R k }.
77- Notation "R .-ker X ~> Y" := (kernel X Y R).
77+ Notation "R .-ker X ~> Y" := (kernel X%type Y R).
7878
7979Arguments measurable_kernel {_ _ _ _ _} _.
8080
@@ -177,7 +177,7 @@ HB.structure Definition SFiniteKernel d d'
177177 (X : measurableType d) (Y : measurableType d') (R : realType) :=
178178 { k of @Kernel _ _ _ _ R k &
179179 Kernel_isSFinite_subdef _ _ X Y R k }.
180- Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R).
180+ Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X%type Y R).
181181Arguments sfinite_kernel_subdef {_ _ _ _ _} _.
182182
183183Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d')
@@ -200,7 +200,7 @@ HB.structure Definition FiniteKernel d d'
200200 (X : measurableType d) (Y : measurableType d') (R : realType) :=
201201 { k of @SFiniteKernel _ _ _ _ _ k &
202202 SFiniteKernel_isFinite _ _ X Y R k }.
203- Notation "R .-fker X ~> Y" := (finite_kernel X Y R).
203+ Notation "R .-fker X ~> Y" := (finite_kernel X%type Y R).
204204Arguments measure_uub {_ _ _ _ _} _.
205205
206206HB.factory Record Kernel_isFinite d d'
@@ -356,7 +356,7 @@ HB.structure Definition SubProbabilityKernel
356356 d d' (X : measurableType d) (Y : measurableType d') (R : realType) :=
357357 { k of @FiniteKernel _ _ _ _ _ k &
358358 FiniteKernel_isSubProbability _ _ X Y R k }.
359- Notation "R .-spker X ~> Y" := (sprobability_kernel X Y R).
359+ Notation "R .-spker X ~> Y" := (sprobability_kernel X%type Y R).
360360
361361HB.factory Record Kernel_isSubProbability d d'
362362 (X : measurableType d) (Y : measurableType d') (R : realType)
@@ -389,7 +389,7 @@ HB.structure Definition ProbabilityKernel d d'
389389 (X : measurableType d) (Y : measurableType d') (R : realType) :=
390390 { k of @SubProbabilityKernel _ _ _ _ _ k &
391391 SubProbability_isProbability _ _ X Y R k }.
392- Notation "R .-pker X ~> Y" := (probability_kernel X Y R).
392+ Notation "R .-pker X ~> Y" := (probability_kernel X%type Y R).
393393
394394HB.factory Record Kernel_isProbability d d'
395395 (X : measurableType d) (Y : measurableType d') (R : realType)
@@ -507,7 +507,7 @@ Variable k : X * Y -> \bar R.
507507
508508Lemma measurable_fun_xsection_integral
509509 (l : X -> {measure set Y -> \bar R})
510- (k_ : ({nnsfun [the measurableType _ of ( X * Y)%type ] >-> R})^nat)
510+ (k_ : ({nnsfun [the measurableType _ of X * Y] >-> R})^nat)
511511 (ndk_ : nondecreasing_seq (k_ : (X * Y -> R)^nat))
512512 (k_k : forall z, EFin \o (k_ ^~ z) --> k z) :
513513 (forall n r,
@@ -847,7 +847,7 @@ Section kcomp_is_measure.
847847Context d1 d2 d3 (X : measurableType d1) (Y : measurableType d2)
848848 (Z : measurableType d3) (R : realType).
849849Variable l : R.-ker X ~> Y.
850- Variable k : R.-ker [the measurableType _ of ( X * Y)%type ] ~> Z.
850+ Variable k : R.-ker [the measurableType _ of X * Y] ~> Z.
851851
852852Local Notation "l \; k" := (kcomp l k).
853853
@@ -885,7 +885,7 @@ Module KCOMP_FINITE_KERNEL.
885885Section kcomp_finite_kernel_kernel.
886886Context d d' d3 (X : measurableType d) (Y : measurableType d')
887887 (Z : measurableType d3) (R : realType) (l : R.-fker X ~> Y)
888- (k : R.-ker [the measurableType _ of ( X * Y)%type ] ~> Z).
888+ (k : R.-ker [the measurableType _ of X * Y] ~> Z).
889889
890890Lemma measurable_fun_kcomp_finite U :
891891 measurable U -> measurable_fun [set: X] ((l \; k) ^~ U).
@@ -903,7 +903,7 @@ Section kcomp_finite_kernel_finite.
903903Context d d' d3 (X : measurableType d) (Y : measurableType d')
904904 (Z : measurableType d3) (R : realType).
905905Variable l : R.-fker X ~> Y.
906- Variable k : R.-fker [the measurableType _ of ( X * Y)%type ] ~> Z.
906+ Variable k : R.-fker [the measurableType _ of X * Y] ~> Z.
907907
908908Let mkcomp_finite : measure_fam_uub (l \; k).
909909Proof .
@@ -927,7 +927,7 @@ Section kcomp_sfinite_kernel.
927927Context d d' d3 (X : measurableType d) (Y : measurableType d')
928928 (Z : measurableType d3) (R : realType).
929929Variable l : R.-sfker X ~> Y.
930- Variable k : R.-sfker [the measurableType _ of ( X * Y)%type ] ~> Z.
930+ Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.
931931
932932Import KCOMP_FINITE_KERNEL.
933933
@@ -973,7 +973,7 @@ Section kcomp_sfinite_kernel.
973973Context d d' d3 (X : measurableType d) (Y : measurableType d')
974974 (Z : measurableType d3) (R : realType).
975975Variable l : R.-sfker X ~> Y.
976- Variable k : R.-sfker [the measurableType _ of ( X * Y)%type ] ~> Z.
976+ Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.
977977
978978HB.instance Definition _ :=
979979 isKernel.Build _ _ X Z R (l \; k) (measurable_fun_mkcomp_sfinite l k).
@@ -1047,7 +1047,7 @@ Section integral_kcomp.
10471047Context d d2 d3 (X : measurableType d) (Y : measurableType d2)
10481048 (Z : measurableType d3) (R : realType).
10491049Variables (l : R.-sfker X ~> Y)
1050- (k : R.-sfker [the measurableType _ of ( X * Y)%type ] ~> Z).
1050+ (k : R.-sfker [the measurableType _ of X * Y] ~> Z).
10511051
10521052Let integral_kcomp_indic x E (mE : measurable E) :
10531053 \int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
0 commit comments