@@ -41,72 +41,6 @@ Local Open Scope classical_set_scope.
4141Local Open Scope ring_scope.
4242Local Open Scope ereal_scope.
4343
44- (* TODO: PR *)
45- Lemma emeasurable_itv1 (R : realType) (i : nat) :
46- measurable (`[(i%:R)%:E, (i.+1%:R)%:E[%classic : set \bar R).
47- Proof .
48- rewrite -[X in measurable X]setCK.
49- apply: measurableC.
50- rewrite set_interval.setCitv /=.
51- apply: measurableU.
52- exact: emeasurable_itv_ninfty_bnd.
53- exact: emeasurable_itv_bnd_pinfty.
54- Qed .
55-
56- Section sfinite_fubini.
57- Context d d' (X : measurableType d) (Y : measurableType d') (R : realType).
58- Variables (m1 : {sfinite_measure set X -> \bar R}).
59- Variables (m2 : {sfinite_measure set Y -> \bar R}).
60- Variables (f : X * Y -> \bar R) (f0 : forall xy, 0 <= f xy).
61- Hypothesis mf : measurable_fun setT f.
62-
63- Lemma sfinite_fubini :
64- \int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).
65- Proof .
66- have [s1 m1E] := sfinite_measure m1.
67- have [s2 m2E] := sfinite_measure m2.
68- rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first.
69- by move=> A mA _; rewrite /= -m1E.
70- transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
71- apply eq_integral => x _; apply: eq_measure_integral => ? ? _.
72- by rewrite /= -m2E.
73- transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
74- rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
75- by move=> t _; exact: integral_ge0.
76- rewrite [X in measurable_fun _ X](_ : _ =
77- fun x => \sum_(n <oo) \int[s2 n]_y f (x, y)); last first.
78- apply/funext => x.
79- by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
80- apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0.
81- by move=> k; apply: measurable_fun_fubini_tonelli_F.
82- apply: eq_eseries => n _; apply eq_integral => x _.
83- by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
84- transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
85- apply eq_eseries => n _; rewrite integral_nneseries//.
86- by move=> m; exact: measurable_fun_fubini_tonelli_F.
87- by move=> m x _; exact: integral_ge0.
88- transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
89- apply eq_eseries => n _; apply eq_eseries => m _.
90- by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
91- transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
92- apply eq_eseries => n _ /=. rewrite ge0_integral_measure_series//.
93- by move=> y _; exact: integral_ge0.
94- exact: measurable_fun_fubini_tonelli_G.
95- transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
96- rewrite integral_nneseries//.
97- by move=> n; apply: measurable_fun_fubini_tonelli_G.
98- by move=> n y _; exact: integral_ge0.
99- transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
100- apply eq_integral => y _.
101- by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2.
102- transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
103- by apply eq_measure_integral => A mA _ /=; rewrite m2E.
104- by apply eq_integral => y _; apply eq_measure_integral => A mA _ /=; rewrite m1E.
105- Qed .
106-
107- End sfinite_fubini.
108- Arguments sfinite_fubini {d d' X Y R} m1 m2 f.
109-
11044Reserved Notation "R .-ker X ~> Y" (at level 42, format "R .-ker X ~> Y").
11145Reserved Notation "R .-sfker X ~> Y" (at level 42, format "R .-sfker X ~> Y").
11246Reserved Notation "R .-fker X ~> Y" (at level 42, format "R .-fker X ~> Y").
@@ -255,7 +189,7 @@ exists (fun n => if n is O then [the _.-ker _ ~> _ of k] else
255189 by case => [|_]; [exact: measure_uub|exact: kzero_uub].
256190move=> t U mU/=; rewrite /mseries.
257191rewrite (nneseries_split 1%N)// big_ord_recl/= big_ord0 adde0.
258- rewrite ereal_series (@eq_eseries _ _ (fun=> 0%E)); last by case.
192+ rewrite ereal_series (@eq_eseriesr _ _ (fun=> 0%E)); last by case.
259193by rewrite eseries0// adde0.
260194Qed .
261195
@@ -298,12 +232,12 @@ End sfinite.
298232
299233Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
300234 (R : realType) (k : R.-sfker Z ~> X) (z : Z) :
301- sfinite_measure_def (k z).
235+ sfinite_measure (k z).
302236Proof .
303237have [s ks] := sfinite k.
304238exists (s ^~ z).
305239 move=> n; have [r snr] := measure_uub (s n).
306- by rewrite /finite_measure (lt_le_trans (snr _))// leey.
240+ by apply: lty_fin_num_fun; rewrite (lt_le_trans (snr _))// leey.
307241by move=> U mU; rewrite ks.
308242Qed .
309243
@@ -398,10 +332,10 @@ HB.end.
398332
399333Lemma finite_kernel_measure d d' (X : measurableType d)
400334 (Y : measurableType d') (R : realType) (k : R.-fker X ~> Y) (x : X) :
401- finite_measure (k x).
335+ fin_num_fun (k x).
402336Proof .
403337have [r k_r] := measure_uub k.
404- by rewrite /finite_measure (@lt_trans _ _ r%:E) ?ltey.
338+ by apply: lty_fin_num_fun; rewrite (@lt_trans _ _ r%:E) ?ltey.
405339Qed .
406340
407341(* see measurable_prod_subset in lebesgue_integral.v;
@@ -714,7 +648,7 @@ exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
714648 by rewrite /msum !big_ord_recr/= big_ord0 add0e EFinD lte_add.
715649move=> x U mU.
716650rewrite /kadd/= -/(measure_add (k1 x) (k2 x)) measure_addE hk1//= hk2//=.
717- rewrite /mseries -nneseriesD//; apply: eq_eseries => n _ /=.
651+ rewrite /mseries -nneseriesD//; apply: eq_eseriesr => n _ /=.
718652by rewrite -/(measure_add (f1 n x) (f2 n x)) measure_addE.
719653Qed .
720654
@@ -996,7 +930,7 @@ transitivity (([the _.-ker _ ~> _ of kseries l_] \; [the _.-ker _ ~> _ of kserie
996930rewrite /= /kcomp/= integral_nneseries//=; last first.
997931 by move=> n; have /measurable_fun_prod1 := measurable_kernel (k_ n) _ mU; exact.
998932transitivity (\sum_(i <oo) \sum_(j <oo) (l_ j \; k_ i) x U).
999- apply: eq_eseries => i _; rewrite integral_kseries//.
933+ apply: eq_eseriesr => i _; rewrite integral_kseries//.
1000934 by have /measurable_fun_prod1 := measurable_kernel (k_ i) _ mU; exact.
1001935rewrite /mseries -hkl/=.
1002936rewrite (_ : setT = setT `*`` (fun=> setT)); last by apply/seteqP; split.
@@ -1098,7 +1032,7 @@ Let integral_kcomp_indic x E (mE : measurable E) :
10981032 \int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
10991033Proof .
11001034rewrite integral_indic//= /kcomp.
1101- by apply eq_integral => y _; rewrite integral_indic.
1035+ by apply: eq_integral => y _; rewrite integral_indic.
11021036Qed .
11031037
11041038Let integral_kcomp_nnsfun x (f : {nnsfun Z >-> R}) :
@@ -1141,7 +1075,7 @@ have [r0|r0] := leP 0%R r.
11411075 rewrite ge0_integralM//; last first.
11421076 have := measurable_kernel k (f @^-1` [set r]) (measurable_sfunP f (measurable_set1 r)).
11431077 by move/measurable_fun_prod1; exact.
1144- by congr (_ * _); apply eq_integral => y _; rewrite integral_indic// setIT.
1078+ by congr (_ * _); apply: eq_integral => y _; rewrite integral_indic// setIT.
11451079rewrite integral0_eq ?mule0; last first.
11461080 by move=> y _; rewrite integral0_eq// => z _; rewrite preimage_nnfun0// indic0.
11471081by rewrite integral0_eq// => y _; rewrite preimage_nnfun0// measure0 mule0.
@@ -1168,18 +1102,18 @@ transitivity (\int[l x]_y lim (fun n => \int[k (x, y)]_z (f_ n z)%:E)).
11681102 by move=> /measurable_fun_prod1; exact.
11691103 + by move=> z; rewrite lee_fin.
11701104 + exact/EFin_measurable_fun.
1171- - by move=> n y _; apply integral_ge0 => // z _; rewrite lee_fin.
1105+ - by move=> n y _; apply: integral_ge0 => // z _; rewrite lee_fin.
11721106 - move=> y _ a b ab; apply: ge0_le_integral => //.
11731107 + by move=> z _; rewrite lee_fin.
11741108 + exact/EFin_measurable_fun.
11751109 + by move=> z _; rewrite lee_fin.
11761110 + exact/EFin_measurable_fun.
11771111 + by move: ab => /ndf_ /lefP ab z _; rewrite lee_fin.
1178- apply eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
1112+ apply: eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
11791113 - by move=> n; exact/EFin_measurable_fun.
11801114 - by move=> n z _; rewrite lee_fin.
11811115 - by move=> z _ a b /ndf_ /lefP; rewrite lee_fin.
1182- by apply eq_integral => z _; apply/cvg_lim => //; exact: f_f.
1116+ by apply: eq_integral => z _; apply/cvg_lim => //; exact: f_f.
11831117Qed .
11841118
11851119End integral_kcomp.
0 commit comments