Skip to content

Commit fac9965

Browse files
committed
upd
1 parent 5fc4aa8 commit fac9965

File tree

2 files changed

+31
-31
lines changed

2 files changed

+31
-31
lines changed

theories/kernel.v

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -41,16 +41,16 @@ Local Open Scope classical_set_scope.
4141
Local Open Scope ring_scope.
4242
Local Open Scope ereal_scope.
4343

44-
(* TODO: PR*)
45-
Lemma emeasurable_itv1 (R : realType) (i : nat) :
46-
measurable (`[(i%:R)%:E, (i.+1%:R)%:E[%classic : set \bar R).
44+
(* PR in progress *)
45+
Lemma emeasurable_itv (R : realType) (i : interval (\bar R)) :
46+
measurable ([set` i]%classic : set \bar R).
4747
Proof.
48-
rewrite -[X in measurable X]setCK.
49-
apply: measurableC.
50-
rewrite set_interval.setCitv /=.
51-
apply: measurableU.
48+
rewrite -[X in measurable X]setCK; apply: measurableC.
49+
rewrite set_interval.setCitv /=; apply: measurableU => [|].
50+
- move: i => [[b1 i1|[|]] i2] /=; rewrite ?set_interval.set_itvE//.
5251
exact: emeasurable_itv_ninfty_bnd.
53-
exact: emeasurable_itv_bnd_pinfty.
52+
- move: i => [i1 [b2 i2|[|]]] /=; rewrite ?set_interval.set_itvE//.
53+
exact: emeasurable_itv_bnd_pinfty.
5454
Qed.
5555

5656
Section sfinite_fubini.
@@ -68,7 +68,7 @@ pose s2 := sfinite_measure_seq m2.
6868
rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first.
6969
by move=> A mA _; rewrite /=; exact: sfinite_measure_seqP.
7070
transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
71-
apply eq_integral => x _; apply: eq_measure_integral => ? ? _.
71+
apply: eq_integral => x _; apply: eq_measure_integral => ? ? _.
7272
exact: sfinite_measure_seqP.
7373
transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
7474
rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
@@ -79,29 +79,29 @@ transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
7979
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
8080
apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0.
8181
by move=> k; apply: measurable_fun_fubini_tonelli_F.
82-
apply: eq_eseries => n _; apply eq_integral => x _.
82+
apply: eq_eseriesr => n _; apply: eq_integral => x _.
8383
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
8484
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
85-
apply eq_eseries => n _; rewrite integral_nneseries//.
85+
apply: eq_eseriesr => n _; rewrite integral_nneseries//.
8686
by move=> m; exact: measurable_fun_fubini_tonelli_F.
8787
by move=> m x _; exact: integral_ge0.
8888
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
89-
apply eq_eseries => n _; apply eq_eseries => m _.
89+
apply: eq_eseriesr => n _; apply: eq_eseriesr => m _.
9090
by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
9191
transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
92-
apply eq_eseries => n _; rewrite ge0_integral_measure_series//.
92+
apply: eq_eseriesr => n _; rewrite ge0_integral_measure_series//.
9393
by move=> y _; exact: integral_ge0.
9494
exact: measurable_fun_fubini_tonelli_G.
9595
transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
9696
rewrite integral_nneseries//.
9797
by move=> n; apply: measurable_fun_fubini_tonelli_G.
9898
by move=> n y _; exact: integral_ge0.
9999
transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
100-
apply eq_integral => y _.
100+
apply: eq_integral => y _.
101101
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2.
102102
transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
103-
by apply eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
104-
apply eq_integral => y _; apply eq_measure_integral => A mA _ /=.
103+
by apply: eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
104+
apply: eq_integral => y _; apply: eq_measure_integral => A mA _ /=.
105105
by rewrite sfinite_measure_seqP.
106106
Qed.
107107

@@ -256,7 +256,7 @@ exists (fun n => if n is O then [the _.-ker _ ~> _ of k] else
256256
by case => [|_]; [exact: measure_uub|exact: kzero_uub].
257257
move=> t U mU/=; rewrite /mseries.
258258
rewrite (nneseries_split 1%N)// big_ord_recl/= big_ord0 adde0.
259-
rewrite ereal_series (@eq_eseries _ _ (fun=> 0%E)); last by case.
259+
rewrite ereal_series (@eq_eseriesr _ _ (fun=> 0%E)); last by case.
260260
by rewrite eseries0// adde0.
261261
Qed.
262262

@@ -299,7 +299,7 @@ End sfinite.
299299

300300
Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
301301
(R : realType) (k : R.-sfker Z ~> X) (z : Z) :
302-
sfinite_measure_def (k z).
302+
sfinite_measure (k z).
303303
Proof.
304304
have [s ks] := sfinite k.
305305
exists (s ^~ z).
@@ -715,7 +715,7 @@ exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
715715
by rewrite /msum !big_ord_recr/= big_ord0 add0e EFinD lte_add.
716716
move=> x U mU.
717717
rewrite /kadd/= -/(measure_add (k1 x) (k2 x)) measure_addE hk1//= hk2//=.
718-
rewrite /mseries -nneseriesD//; apply: eq_eseries => n _ /=.
718+
rewrite /mseries -nneseriesD//; apply: eq_eseriesr => n _ /=.
719719
by rewrite -/(measure_add (f1 n x) (f2 n x)) measure_addE.
720720
Qed.
721721

@@ -997,7 +997,7 @@ transitivity (([the _.-ker _ ~> _ of kseries l_] \; [the _.-ker _ ~> _ of kserie
997997
rewrite /= /kcomp/= integral_nneseries//=; last first.
998998
by move=> n; have /measurable_fun_prod1 := measurable_kernel (k_ n) _ mU; exact.
999999
transitivity (\sum_(i <oo) \sum_(j <oo) (l_ j \; k_ i) x U).
1000-
apply: eq_eseries => i _; rewrite integral_kseries//.
1000+
apply: eq_eseriesr => i _; rewrite integral_kseries//.
10011001
by have /measurable_fun_prod1 := measurable_kernel (k_ i) _ mU; exact.
10021002
rewrite /mseries -hkl/=.
10031003
rewrite (_ : setT = setT `*`` (fun=> setT)); last by apply/seteqP; split.
@@ -1099,7 +1099,7 @@ Let integral_kcomp_indic x E (mE : measurable E) :
10991099
\int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
11001100
Proof.
11011101
rewrite integral_indic//= /kcomp.
1102-
by apply eq_integral => y _; rewrite integral_indic.
1102+
by apply: eq_integral => y _; rewrite integral_indic.
11031103
Qed.
11041104

11051105
Let integral_kcomp_nnsfun x (f : {nnsfun Z >-> R}) :
@@ -1142,7 +1142,7 @@ have [r0|r0] := leP 0%R r.
11421142
rewrite ge0_integralM//; last first.
11431143
have := measurable_kernel k (f @^-1` [set r]) (measurable_sfunP f (measurable_set1 r)).
11441144
by move/measurable_fun_prod1; exact.
1145-
by congr (_ * _); apply eq_integral => y _; rewrite integral_indic// setIT.
1145+
by congr (_ * _); apply: eq_integral => y _; rewrite integral_indic// setIT.
11461146
rewrite integral0_eq ?mule0; last first.
11471147
by move=> y _; rewrite integral0_eq// => z _; rewrite preimage_nnfun0// indic0.
11481148
by rewrite integral0_eq// => y _; rewrite preimage_nnfun0// measure0 mule0.
@@ -1169,18 +1169,18 @@ transitivity (\int[l x]_y lim (fun n => \int[k (x, y)]_z (f_ n z)%:E)).
11691169
by move=> /measurable_fun_prod1; exact.
11701170
+ by move=> z; rewrite lee_fin.
11711171
+ exact/EFin_measurable_fun.
1172-
- by move=> n y _; apply integral_ge0 => // z _; rewrite lee_fin.
1172+
- by move=> n y _; apply: integral_ge0 => // z _; rewrite lee_fin.
11731173
- move=> y _ a b ab; apply: ge0_le_integral => //.
11741174
+ by move=> z _; rewrite lee_fin.
11751175
+ exact/EFin_measurable_fun.
11761176
+ by move=> z _; rewrite lee_fin.
11771177
+ exact/EFin_measurable_fun.
11781178
+ by move: ab => /ndf_ /lefP ab z _; rewrite lee_fin.
1179-
apply eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
1179+
apply: eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
11801180
- by move=> n; exact/EFin_measurable_fun.
11811181
- by move=> n z _; rewrite lee_fin.
11821182
- by move=> z _ a b /ndf_ /lefP; rewrite lee_fin.
1183-
by apply eq_integral => z _; apply/cvg_lim => //; exact: f_f.
1183+
by apply: eq_integral => z _; apply/cvg_lim => //; exact: f_f.
11841184
Qed.
11851185

11861186
End integral_kcomp.

theories/prob_lang.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -164,9 +164,9 @@ rewrite (_ : (fun x => _) = (fun x => x *
164164
(\1_(`[i%:R%:E, i.+1%:R%:E [%classic : set _) x)%:E)); last first.
165165
apply/funext => x; case: ifPn => ix; first by rewrite indicE/= mem_set ?mule1.
166166
by rewrite indicE/= memNset ?mule0// /= in_itv/=; exact/negP.
167-
apply emeasurable_funM => /=; first exact: measurable_fun_id.
167+
apply: emeasurable_funM => /=; first exact: measurable_fun_id.
168168
apply/EFin_measurable_fun.
169-
by rewrite (_ : \1__ = mindic R (emeasurable_itv1 R i)).
169+
by rewrite (_ : \1__ = mindic R (emeasurable_itv `[(i%:R)%:E, (i.+1%:R)%:E[)).
170170
Qed.
171171

172172
Definition mk i t := [the measure _ _ of k mf i t].
@@ -615,15 +615,15 @@ Lemma letin_iteT : f t -> letin (ite mf k1 k2) u t U = letin k1 u t U.
615615
Proof.
616616
move=> ftT.
617617
rewrite !letinE/=.
618-
apply eq_measure_integral => V mV _.
618+
apply: eq_measure_integral => V mV _.
619619
by rewrite iteE ftT.
620620
Qed.
621621

622622
Lemma letin_iteF : ~~ f t -> letin (ite mf k1 k2) u t U = letin k2 u t U.
623623
Proof.
624624
move=> ftF.
625625
rewrite !letinE/=.
626-
apply eq_measure_integral => V mV _.
626+
apply: eq_measure_integral => V mV _.
627627
by rewrite iteE (negbTE ftF).
628628
Qed.
629629

@@ -679,7 +679,7 @@ Proof. exact: measure_semi_sigma_additive. Qed.
679679
HB.instance Definition _ z := @isMeasure.Build _ R X (T z) (T0 z) (T_ge0 z)
680680
(@T_semi_sigma_additive z).
681681

682-
Let sfinT z : sfinite_measure_def (T z). Proof. exact: sfinite_kernel_measure. Qed.
682+
Let sfinT z : sfinite_measure (T z). Proof. exact: sfinite_kernel_measure. Qed.
683683
HB.instance Definition _ z := @Measure_isSFinite_subdef.Build _ X R
684684
(T z) (sfinT z).
685685

@@ -691,7 +691,7 @@ Proof. exact: measure_semi_sigma_additive. Qed.
691691
HB.instance Definition _ z := @isMeasure.Build _ R Y (U z) (U0 z) (U_ge0 z)
692692
(@U_semi_sigma_additive z).
693693

694-
Let sfinU z : sfinite_measure_def (U z). Proof. exact: sfinite_kernel_measure. Qed.
694+
Let sfinU z : sfinite_measure (U z). Proof. exact: sfinite_kernel_measure. Qed.
695695
HB.instance Definition _ z := @Measure_isSFinite_subdef.Build _ Y R
696696
(U z) (sfinU z).
697697

0 commit comments

Comments
 (0)