|
| 1 | +# %% |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +from matplotlib import pyplot |
| 5 | +from scipy import stats |
| 6 | +import probscale # nothing else needed |
| 7 | + |
| 8 | +beta = stats.beta(a=3, b=4) |
| 9 | +weibull = stats.weibull_min(c=5) |
| 10 | +scales = [ |
| 11 | + {"scale": {"value": "linear"}, "label": "Linear (built-in)"}, |
| 12 | + {"scale": {"value": "log", "base": 10}, "label": "Log. Base 10 (built-in)"}, |
| 13 | + {"scale": {"value": "log", "base": 2}, "label": "Log. Base 2 (built-in)"}, |
| 14 | + {"scale": {"value": "logit"}, "label": "Logit (built-in)"}, |
| 15 | + {"scale": {"value": "prob"}, "label": "Standard Normal Probability (this package)"}, |
| 16 | + { |
| 17 | + "scale": {"value": "prob", "dist": weibull}, |
| 18 | + "label": "Weibull probability scale, c=5 (this package)", |
| 19 | + }, |
| 20 | + { |
| 21 | + "scale": {"value": "prob", "dist": beta}, |
| 22 | + "label": "Beta probability scale, α=3 & β=4 (this package)", |
| 23 | + }, |
| 24 | +] |
| 25 | + |
| 26 | +N = len(scales) |
| 27 | +fig, axes = pyplot.subplots(nrows=N, figsize=(9, N - 1), constrained_layout=True) |
| 28 | +for scale, ax in zip(scales, axes.flat): |
| 29 | + ax.set_xscale(**scale["scale"]) |
| 30 | + ax.text(0.0, 0.1, scale["label"] + " →", transform=ax.transAxes) |
| 31 | + ax.set_xlim(left=0.5, right=99.5) |
| 32 | + ax.set_yticks([]) |
| 33 | + ax.spines.left.set_visible(False) |
| 34 | + ax.spines.right.set_visible(False) |
| 35 | + ax.spines.top.set_visible(False) |
| 36 | + |
| 37 | +outpath = Path(__file__).parent.joinpath("../img/example.png").resolve() |
| 38 | +fig.savefig(outpath, dpi=300) |
0 commit comments