$ lpc -P 36 -W 45 -O 15 HBSe_20170128T231621.wav
Number of classes: 1
class '': 1
HBSe_20170128T231621.wav
lpaOnSignal: P=36 numSamples=36977463 sampleRate=32000 winSize=1440 offset=480 T=77034
data/predictors/_/HBSe_20170128T231621.prd: '': predictor saved
$ vq.learn -P 36 -e 0.0005 data/predictors/_/HBSe_20170128T231621.prd
Plot the general evaluation:
$ cb.plot_evaluation.py data/codebooks/_/eps_0.0005.rpt.csv
M passes DDprm σ inertia
0 2 7 0.255785 1.587956 143107.263731
1 4 9 0.211432 2.192094 125029.021765
2 8 27 0.164426 5.526398 109486.976613
3 16 16 0.140328 7.775847 103058.072623
4 32 13 0.116596 11.300068 97311.543605
5 64 15 0.101224 14.506913 94083.550532
6 128 16 0.090683 17.409458 92055.505677
7 256 15 0.082132 20.192721 90490.788718
8 512 16 0.074236 23.523729 89079.286266
9 1024 16 0.066392 27.985164 87714.217618
10 2048 13 0.059158 32.833571 86486.074742
Cell cardinality and distortions for M=1024:
$ cb.plot_cards_dists.py data/codebooks/_/eps_0.0005_M_1024.cbook.cards_dists.csv
As a scatter plot:
cb.plot_cards_dists.py --scatter data/codebooks/_/eps_0.0005_M_1024.cbook.cards_dists.csv
Extract k_1 and k_2 from the training vectors:
$ prd.show -k -r 1-2 data/predictors/_/HBSe_20170128T231621.prd > data/predictors/_/HBSe_20170128T231621.prd.kk.csv
and from the codebooks:
$ for M in 0002 0004 0008 0016 0032 0064 0128 0256 0512 1024; do
cb.show -r 1-2 data/codebooks/_/eps_0.0005_M_$M.cbook > data/codebooks/_/eps_0.0005_M_$M.cbook.kk.csv
done
With the above set of reflection coefficients, let's generate a few "k_1 vs. k_2" scatter plots:
$ for M in 0002 0008 0032 0128 0512; do
cb.plot_reflections.py data/predictors/_/HBSe_20170128T231621.prd.kk.csv data/codebooks/_/eps_0.0005_M_$M.cbook.kk.csv
done
(Note: A maximum of 8000 training vectors, randomly chosen in each case, are plotted.)
M=2:
M=8:
M=32:
M=128:
M=512:
Similar reflection coefficient inspection but now with 3 coefficients:
$ prd.show -k -r 1-3 data/predictors/_/HBSe_20170128T231621.prd > data/predictors/_/HBSe_20170128T231621.prd.kkk.csv
$ cb.show -r 1-3 data/codebooks/_/eps_0.0005_M_1024.cbook > data/codebooks/_/eps_0.0005_M_1024.cbook.kkk.csv
$ cb.plot_reflections.py data/predictors/_/HBSe_20170128T231621.prd.kkk.csv data/codebooks/_/eps_0.0005_M_1024.cbook.kkk.csv
df_training points = 77034
df_training plotted points = 8000
df_codebook points = 1024
See P2/README.md.