-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy path03 Intro to Flux.jl
92 lines (57 loc) · 1.99 KB
/
03 Intro to Flux.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import Pkg; Pkg.activate(@__DIR__); Pkg.instantiate()
# # Intro to Flux.jl
# ### Let's load in a whole dataset!
#
# Load the datasets that contain the features of the apple and banana images.
#
# The first task:
using CSV, DataFrames
apples = DataFrame(CSV.File("data/apples.dat", delim='\t', normalizenames=true))
bananas = DataFrame(CSV.File("data/bananas.dat", delim='\t', normalizenames=true))
#-
x_apples = [ [row.red, row.green] for row in eachrow(apples)]
x_bananas = [ [row.red, row.green] for row in eachrow(bananas)]
# Concatenate the x (features) together to create a vector of all our datapoints, and create the corresponding vector of known labels:
xs = [x_apples; x_bananas]
ys = [fill(0, size(x_apples)); fill(1, size(x_bananas))]
#-
using Flux
model = Dense(2, 1, σ)
# We can evaluate the model (currently initialized with random weights) to see what the output value is for a given input:
model(xs[1])
# And of course we can examine the current loss value for that datapoint:
loss = Flux.mse(model(xs[1]), ys[1])
#-
typeof(loss)
# ### Backpropagation
model.W
#-
model.W.grad
#-
using Flux.Tracker
back!(loss)
#-
model.W.grad
# Now we have all the tools necessary to build a simple gradient descent algorithm!
#-
# ### The easy way
#
# You don't want to manually write out gradient descent algorithms every time!
# Flux, of course, also brings in lots of optimizers that can do this all for you.
@doc Descent
#-
@doc Flux.train!
# So we can simply define our loss function, an optimizer, and then call `train!`. That's basic machine learning with Flux.jl.
model = Dense(2, 1, σ)
L(x,y) = Flux.mse(model(x), y)
opt = Descent()
Flux.train!(L, params(model), zip(xs, ys), opt)
# ## Visualize the result
using Plots
begin
contour(0:.1:1, 0:.1:1, (x, y) -> model([x,y])[].data, fill=true)
scatter!(first.(x_apples), last.(x_apples), label="apples")
scatter!(first.(x_bananas), last.(x_bananas), label="bananas")
xlabel!("mean red value")
ylabel!("mean green value")
end