forked from NVIDIAGameWorks/kaolin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
253 lines (229 loc) · 9.64 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# some useful environment variables:
#
# TORCH_CUDA_ARCH_LIST
# specify which CUDA architectures to build for
#
# IGNORE_TORCH_VER
# ignore version requirements for PyTorch
import os
from setuptools import setup, find_packages
import importlib
from pkg_resources import parse_version
import warnings
import logging
import glob
import sys
import subprocess # Added import
# Define version constraints
TORCH_MIN_VER = '1.6.0'
TORCH_MAX_VER = '2.6.0' # Updated to support newer PyTorch versions
CYTHON_MIN_VER = '0.29.37'
IGNORE_TORCH_VER = os.getenv('IGNORE_TORCH_VER') is not None
# Module required before installation
# trying to install it ahead turned out to be too unstable
# Check for PyTorch
torch_spec = importlib.util.find_spec("torch")
if torch_spec is None:
raise ImportError(
f"Kaolin requires PyTorch >= {TORCH_MIN_VER}, <= {TORCH_MAX_VER}. "
"Please install it before proceeding."
)
else:
import torch
torch_ver = parse_version(parse_version(torch.__version__).base_version)
if torch_ver < parse_version(TORCH_MIN_VER) or torch_ver > parse_version(TORCH_MAX_VER):
if IGNORE_TORCH_VER:
warnings.warn(
f"Kaolin is compatible with PyTorch >= {TORCH_MIN_VER}, <= {TORCH_MAX_VER}, "
f"but found version {torch.__version__}. Continuing as IGNORE_TORCH_VER is set."
)
else:
raise ImportError(
f"Kaolin requires PyTorch >= {TORCH_MIN_VER}, <= {TORCH_MAX_VER}, "
f"but found version {torch.__version__}. "
"Set IGNORE_TORCH_VER=1 to proceed with this version."
)
# Check for Cython
cython_spec = importlib.util.find_spec("cython")
if cython_spec is None:
raise ImportError(
f"Kaolin requires Cython >= {CYTHON_MIN_VER}. Please install it before proceeding."
)
else:
import Cython
cython_ver = parse_version(Cython.__version__)
if cython_ver < parse_version(CYTHON_MIN_VER):
warnings.warn(
f"Kaolin requires Cython >= {CYTHON_MIN_VER}, "
f"but found version {Cython.__version__}. This may cause compatibility issues."
)
# Check for NumPy
numpy_spec = importlib.util.find_spec("numpy")
if numpy_spec is None:
raise ImportError(
"Kaolin requires NumPy. Please install it before proceeding."
)
import numpy
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
# Setup logging and working directory
cwd = os.path.dirname(os.path.abspath(__file__))
logger = logging.getLogger()
logging.basicConfig(format='%(levelname)s - %(message)s')
def get_cuda_bare_metal_version(cuda_dir):
"""Get CUDA version from nvcc."""
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
return raw_output, release[0], release[1][0]
# Handle CUDA availability
if not torch.cuda.is_available() and os.getenv('FORCE_CUDA', '0') == '1':
logging.warning(
"Torch did not find available GPUs. Assuming cross-compilation.\n"
"Default architectures: Pascal (6.0, 6.1, 6.2), Volta (7.0), Turing (7.5),\n"
"Ampere (8.0) if CUDA >= 11.0, Hopper (9.0) if CUDA >= 11.8, Blackwell (12.0) if CUDA >= 12.8\n"
"Set TORCH_CUDA_ARCH_LIST for specific architectures."
)
if os.getenv("TORCH_CUDA_ARCH_LIST") is None:
_, major, minor = get_cuda_bare_metal_version(CUDA_HOME)
major, minor = int(major), int(minor)
if major == 11:
if minor == 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
elif minor < 8:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;8.9;9.0"
elif major == 12:
if minor <= 6:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0;12.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
print(f'TORCH_CUDA_ARCH_LIST: {os.environ["TORCH_CUDA_ARCH_LIST"]}')
elif not torch.cuda.is_available():
logging.warning(
"No GPUs found. Installing with CPU support only. "
"Set FORCE_CUDA=1 for GPU cross-compilation."
)
# Package metadata
PACKAGE_NAME = 'kaolin'
DESCRIPTION = 'Kaolin: A PyTorch library for accelerating 3D deep learning research'
URL = 'https://github.com/NVIDIAGameWorks/kaolin'
AUTHOR = 'NVIDIA'
LICENSE = 'Apache License 2.0'
LONG_DESCRIPTION = """
Kaolin is a PyTorch library aiming to accelerate 3D deep learning research. Kaolin provides efficient implementations
of differentiable 3D modules for use in deep learning systems. With functionality to load and preprocess several popular
3D datasets, and native functions to manipulate meshes, pointclouds, signed distance functions, and voxel grids, Kaolin
mitigates the need to write wasteful boilerplate code. Kaolin packages together several differentiable graphics modules
including rendering, lighting, shading, and view warping. Kaolin also supports an array of loss functions and evaluation
metrics for seamless evaluation and provides visualization functionality to render the 3D results. Importantly, we curate
a comprehensive model zoo comprising many state-of-the-art 3D deep learning architectures, to serve as a starting point
for future research endeavours.
"""
# Version handling
version_txt = os.path.join(cwd, 'version.txt')
with open(version_txt) as f:
version = f.readline().strip()
def write_version_file():
"""Write version to kaolin/version.py."""
version_path = os.path.join(cwd, 'kaolin', 'version.py')
with open(version_path, 'w') as f:
f.write(f"__version__ = '{version}'\n")
write_version_file()
def get_requirements():
"""Read runtime dependencies from requirements files."""
requirements = []
with open(os.path.join(cwd, 'tools', 'viz_requirements.txt'), 'r') as f:
requirements.extend(line.strip() for line in f)
with open(os.path.join(cwd, 'tools', 'requirements.txt'), 'r') as f:
requirements.extend(line.strip() for line in f)
return requirements
def get_scripts():
"""Return list of scripts to install."""
return ['kaolin/experimental/dash3d/kaolin-dash3d']
def get_extensions():
"""Define C++ and CUDA extensions."""
extra_compile_args = {'cxx': ['-O3']}
define_macros = []
include_dirs = []
sources = glob.glob('kaolin/csrc/**/*.cpp', recursive=True)
# FORCE_CUDA is for cross-compilation in docker build
is_cuda = torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1'
if is_cuda:
define_macros += [("WITH_CUDA", None), ("THRUST_IGNORE_CUB_VERSION_CHECK", None)]
sources += glob.glob('kaolin/csrc/**/*.cu', recursive=True)
extension = CUDAExtension
extra_compile_args['nvcc'] = ['-O3', '-DWITH_CUDA', '-DTHRUST_IGNORE_CUB_VERSION_CHECK']
include_dirs = get_include_dirs()
else:
extension = CppExtension
extensions = [
extension(
name='kaolin._C',
sources=sources,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
include_dirs=include_dirs
)
]
# Replace cudart with cudart_static
for ext in extensions:
ext.libraries = ['cudart_static' if x == 'cudart' else x for x in ext.libraries]
# Cython extensions
use_cython = True
ext_suffix = '.pyx' if use_cython else '.cpp'
cython_extensions = [
CppExtension(
'kaolin.ops.mesh.triangle_hash',
sources=[f'kaolin/cython/ops/mesh/triangle_hash{ext_suffix}'],
include_dirs=[numpy.get_include()],
),
CppExtension(
'kaolin.ops.conversions.mise',
sources=[f'kaolin/cython/ops/conversions/mise{ext_suffix}'],
),
]
if use_cython:
from Cython.Build import cythonize
from Cython.Compiler import Options
compiler_directives = Options.get_directive_defaults()
compiler_directives["emit_code_comments"] = False
cython_extensions = cythonize(
cython_extensions,
language='c++',
compiler_directives=compiler_directives
)
return extensions + cython_extensions
def get_include_dirs():
"""Get include directories for CUDA builds."""
include_dirs = []
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
_, major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if "CUB_HOME" in os.environ:
logging.warning(f"Including CUB_HOME: {os.environ['CUB_HOME']}")
include_dirs.append(os.environ["CUB_HOME"])
elif int(major) < 11:
logging.warning(f"Including default CUB: {os.path.join(cwd, 'third_party/cub')}")
include_dirs.append(os.path.join(cwd, 'third_party/cub'))
return include_dirs
if __name__ == '__main__':
setup(
name=PACKAGE_NAME,
version=version,
author=AUTHOR,
description=DESCRIPTION,
url=URL,
long_description=LONG_DESCRIPTION,
license=LICENSE,
python_requires='~=3.7',
packages=find_packages(exclude=('docs', 'tests', 'examples')),
scripts=get_scripts(),
include_package_data=True,
install_requires=get_requirements(),
zip_safe=False,
ext_modules=get_extensions(),
cmdclass={'build_ext': BuildExtension.with_options(no_python_abi_suffix=True)}
)