Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PETRv1 stuck at high loss #161

Open
tungyen opened this issue Jun 4, 2024 · 0 comments
Open

PETRv1 stuck at high loss #161

tungyen opened this issue Jun 4, 2024 · 0 comments

Comments

@tungyen
Copy link

tungyen commented Jun 4, 2024

Hi, when I run projects/configs/petr/petr_vovnet_gridmask_p4_800x320.py, the loss stuck in 14, while your result is 5 in the end. Below is my config, and I am using 4 RTX-3090 to run the code.

_base_ = [
    '../../../mmdetection3d/configs/_base_/datasets/nus-3d.py',
    '../../../mmdetection3d/configs/_base_/default_runtime.py'
]
backbone_norm_cfg = dict(type='LN', requires_grad=True)
plugin=True
plugin_dir='projects/mmdet3d_plugin/'

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
img_norm_cfg = dict(
    mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False)
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=True)
model = dict(
    type='Petr3D',
    use_grid_mask=True,
    img_backbone=dict(
        type='VoVNetCP',
        spec_name='V-99-eSE',
        norm_eval=True,
        frozen_stages=-1,
        input_ch=3,
        out_features=('stage4','stage5',)),
    img_neck=dict(
        type='CPFPN',
        in_channels=[768, 1024],
        out_channels=256,
        num_outs=2),
    pts_bbox_head=dict(
        type='PETRHead',
        num_classes=10,
        in_channels=256,
        num_query=900,
        LID=True,
        with_position=True,
        with_multiview=True,
        position_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        normedlinear=False,
        transformer=dict(
            type='PETRTransformer',
            decoder=dict(
                type='PETRTransformerDecoder',
                return_intermediate=True,
                num_layers=6,
                transformerlayers=dict(
                    type='PETRTransformerDecoderLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',
                            embed_dims=256,
                            num_heads=8,
                            dropout=0.1),
                        dict(
                            type='PETRMultiheadAttention',
                            embed_dims=256,
                            num_heads=8,
                            dropout=0.1),
                        ],
                    feedforward_channels=2048,
                    ffn_dropout=0.1,
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm')),
            )),
        bbox_coder=dict(
            type='NMSFreeCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            pc_range=point_cloud_range,
            max_num=300,
            voxel_size=voxel_size,
            num_classes=10), 
        positional_encoding=dict(
            type='SinePositionalEncoding3D', num_feats=128, normalize=True),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=2.0),
        loss_bbox=dict(type='L1Loss', loss_weight=0.25),
        loss_iou=dict(type='GIoULoss', loss_weight=0.0)),
    # model training and testing settings
    train_cfg=dict(pts=dict(
        grid_size=[512, 512, 1],
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range,
        out_size_factor=4,
        assigner=dict(
            type='HungarianAssigner3D',
            cls_cost=dict(type='FocalLossCost', weight=2.0),
            reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
            iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. 
            pc_range=point_cloud_range))))

dataset_type = 'CustomNuScenesDataset'
data_root = 'data/nuscenes/'

file_client_args = dict(backend='disk')

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'nuscenes_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(
            car=5,
            truck=5,
            bus=5,
            trailer=5,
            construction_vehicle=5,
            traffic_cone=5,
            barrier=5,
            motorcycle=5,
            bicycle=5,
            pedestrian=5)),
    classes=class_names,
    sample_groups=dict(
        car=2,
        truck=3,
        construction_vehicle=7,
        bus=4,
        trailer=6,
        barrier=2,
        motorcycle=6,
        bicycle=6,
        pedestrian=2,
        traffic_cone=2),
    points_loader=dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=[0, 1, 2, 3, 4],
        file_client_args=file_client_args))
ida_aug_conf = {
        "resize_lim": (0.47, 0.625),
        "final_dim": (320, 800),
        "bot_pct_lim": (0.0, 0.0),
        "rot_lim": (0.0, 0.0),
        "H": 900,
        "W": 1600,
        "rand_flip": True,
    }
train_pipeline = [
    dict(type='LoadMultiViewImageFromFiles', to_float32=True),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='ResizeCropFlipImage', data_aug_conf = ida_aug_conf, training=True),
    dict(type='GlobalRotScaleTransImage',
            rot_range=[-0.3925, 0.3925],
            translation_std=[0, 0, 0],
            scale_ratio_range=[0.95, 1.05],
            reverse_angle=True,
            training=True
            ),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'])
]
test_pipeline = [
    dict(type='LoadMultiViewImageFromFiles', to_float32=True),
    dict(type='ResizeCropFlipImage', data_aug_conf = ida_aug_conf, training=False),
    dict(type='NormalizeMultiviewImage', **img_norm_cfg),
    dict(type='PadMultiViewImage', size_divisor=32),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['img'])
        ])
]

data = dict(
    samples_per_gpu=1,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_train.pkl',
        pipeline=train_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=False,
        use_valid_flag=True,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
        box_type_3d='LiDAR'),
    val=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality),
    test=dict(type=dataset_type, pipeline=test_pipeline, classes=class_names, modality=input_modality))

optimizer = dict(
    type='AdamW', 
    lr=2e-4,
    paramwise_cfg=dict(
        custom_keys={
            'img_backbone': dict(lr_mult=0.1),
        }),
    weight_decay=0.01)

optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512., grad_clip=dict(max_norm=35, norm_type=2))

# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    min_lr_ratio=1e-3,
    )
total_epochs = 24
evaluation = dict(interval=24, pipeline=test_pipeline)
find_unused_parameters=False

runner = dict(type='EpochBasedRunner', max_epochs=total_epochs)
load_from='ckpts/fcos3d_vovnet_imgbackbone-remapped.pth'
resume_from=None

# mAP: 0.3778
# mATE: 0.7463
# mASE: 0.2718
# mAOE: 0.4883
# mAVE: 0.9062
# mAAE: 0.2123
# NDS: 0.4264
# Eval time: 242.1s

# Per-class results:
# Object Class    AP      ATE     ASE     AOE     AVE     AAE
# car     0.556   0.555   0.153   0.091   0.917   0.216
# truck   0.330   0.805   0.218   0.119   0.859   0.250
# bus     0.412   0.789   0.205   0.162   2.067   0.337
# trailer 0.221   0.976   0.233   0.663   0.797   0.146
# construction_vehicle    0.094   1.096   0.493   1.145   0.190   0.349
# pedestrian      0.453   0.688   0.289   0.636   0.549   0.235
# motorcycle      0.368   0.690   0.256   0.622   1.417   0.149
# bicycle 0.341   0.609   0.270   0.812   0.455   0.017
# traffic_cone    0.531   0.582   0.320   nan     nan     nan
# barrier 0.472   0.673   0.281   0.145   nan     nan
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant