-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathmain.py
85 lines (64 loc) · 2.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
class NeuralNetwork():
def __init__(self):
# Seed the random number generator
np.random.seed(1)
# Set synaptic weights to a 3x1 matrix,
# with values from -1 to 1 and mean 0
self.synaptic_weights = 2 * np.random.random((3, 1)) - 1
def sigmoid(self, x):
"""
Takes in weighted sum of the inputs and normalizes
them through between 0 and 1 through a sigmoid function
"""
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
"""
The derivative of the sigmoid function used to
calculate necessary weight adjustments
"""
return x * (1 - x)
def train(self, training_inputs, training_outputs, training_iterations):
"""
We train the model through trial and error, adjusting the
synaptic weights each time to get a better result
"""
for iteration in range(training_iterations):
# Pass training set through the neural network
output = self.think(training_inputs)
# Calculate the error rate
error = training_outputs - output
# Multiply error by input and gradient of the sigmoid function
# Less confident weights are adjusted more through the nature of the function
adjustments = np.dot(training_inputs.T, error * self.sigmoid_derivative(output))
# Adjust synaptic weights
self.synaptic_weights += adjustments
def think(self, inputs):
"""
Pass inputs through the neural network to get output
"""
inputs = inputs.astype(float)
output = self.sigmoid(np.dot(inputs, self.synaptic_weights))
return output
if __name__ == "__main__":
# Initialize the single neuron neural network
neural_network = NeuralNetwork()
print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)
# The training set, with 4 examples consisting of 3
# input values and 1 output value
training_inputs = np.array([[0,0,1],
[1,1,1],
[1,0,1],
[0,1,1]])
training_outputs = np.array([[0,1,1,0]]).T
# Train the neural network
neural_network.train(training_inputs, training_outputs, 10000)
print("Synaptic weights after training: ")
print(neural_network.synaptic_weights)
A = str(input("Input 1: "))
B = str(input("Input 2: "))
C = str(input("Input 3: "))
print("New situation: input data = ", A, B, C)
print("Output data: ")
print(neural_network.think(np.array([A, B, C])))