-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_dataset.py
199 lines (154 loc) · 6.44 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python3
from scipy.sparse import * # this script needs scipy >= v0.15
import numpy as np
import pickle
from math import log, exp, sqrt
from config import *
from config_shared import *
from utils import count_file_lines, print_header_str, print_progress_bar
from handle_pos_tags import pos_to_emb
################### Currently not used #####################
def weight(x, alpha=1):
return 1 # No weights
# return 1/(sqrt(x))
# return 1/(1+exp(-alpha/x))
def entropy(vocab_pos, vocab_neg):
"""Computes entropy of all words in vocabulary.
# Params
:vocab_pos - contains the frequency of all words in positive corpus
:vocab_neg - contains the frequency of all words in negative corpus
"""
entropy = {}
min_entr, max_entr = 1.0, 0.0
for vocab, vocab_other in [(vocab_pos, vocab_neg), (vocab_neg, vocab_pos)]:
for w in vocab:
if w in entropy:
continue
n1 = vocab[w]
n2 = 0
if w in vocab_other:
n2 = vocab_other[w]
p1 = n1 / (n1 + n2)
p2 = n2 / (n1 + n2)
if p2 == 0:
p2 = 0.00000001
entropy[w] = -p1 * log(p1) - p2 * log(p2)
max_entr = max(max_entr, entropy[w])
min_entr = min(min_entr, entropy[w])
global l, r
l, r = min_entr, max_entr
if verbose > 0:
print('Max and min entropies:', max_entr, min_entr)
print('Max and min weights:', weight(max_entr), weight(min_entr))
print('Entropy vocabulary size:', len(entropy))
return entropy
def prob_ws_given_sentiment(vocab):
n = 0
for _, c in vocab.items():
n += c
prob = {}
for w, c in vocab.items():
prob[w] = c / n
return prob
def salience(vocab_pos, vocab_neg):
"""Computes salience of all words in vocabulary.
# Params
:vocab_pos - contains the frequency of all words in positive corpus
:vocab_neg - contains the frequency of all words in negative corpus
"""
salience = {}
prob_pos = prob_ws_given_sentiment(vocab_pos)
prob_neg = prob_ws_given_sentiment(vocab_neg)
for prob1, prob2 in [(prob_pos, prob_neg), (prob_neg, prob_pos)]:
for w in prob1:
if w in salience:
continue
p1 = prob1[w]
p2 = 0.00000001
if w in prob2:
p2 = prob2[w]
s = 1 - (min(p1, p2) / max(p1, p2))
# if s > 0.70:
salience[w] = s
print(len(salience))
# print(salience['i'], salience['<user>'], salience['harvester'])
return salience
###########################################################################
def get_emb_sum(embeddings, vocab, line):
tokens = [vocab.get(w, -1) for w in line]
tokens = [t for t in tokens if t >= 0]
emb_tweet = np.zeros(embeddings.shape[1], dtype = 'float32')
for t in tokens:
emb_tweet += embeddings[t]
if len(tokens) > 0:
emb_tweet /= len(tokens)
return emb_tweet
def compute_dataset_from_embeddings(vocab=None, embeddings=None):
"""Creates matrix of tweet embeddings for baseline.
Sums embeddings of words in tweet (possibly weighting the sum with other metrics - entropy, salience...)
# Configs
:dataset_version - choose preprocessing
:emb_dataset - choose full or small dataset
:embedding_dim - size of embeddings
:misc, all other configurations are embedding-specific
(they have influence on the outcome, but not on the functioning of the module)
"""
if verbose > 0:
print_header_str('PREPARE DATASET')
if vocab is None:
with open(vocab_dir + vocab_file + '.pkl', 'rb') as f:
vocab = pickle.load(f)
if embeddings is None:
embeddings = np.load(embeddings_dir + selected_embeddings_file + '.npy', allow_pickle=True)
n_train = count_file_lines(tweet_dir + cls_train_tweets_pos) + count_file_lines(tweet_dir + cls_train_tweets_neg)
d = embeddings.shape[1]
x_train = np.zeros((n_train, d), dtype = 'float32')
y_train = np.zeros(n_train, dtype = 'float32')
counter = 0
if verbose == 1:
print_progress_bar(0, n_train, prefix='Embedding training tweets:')
for fn in [tweet_dir + cls_train_tweets_pos, tweet_dir + cls_train_tweets_neg]:
if 'tags' in fn:
continue
curr_file_class = 1 if 'pos' in fn else 0
with open(fn) as f:
if load_tags:
fn_tag = os.path.splitext(fn)[0] + '_tags.txt'
f_tag = open(fn_tag).readlines()
for line_id, line in enumerate(f):
line_tag = None
line = line.strip().split()
if load_tags:
line_tag = f_tag[line_id].strip().split()
line = [tok + (tag if tag in pos_to_emb else '') for tok, tag in zip(line, line_tag)]
x_train[counter] = get_emb_sum(embeddings, vocab, line)
y_train[counter] = curr_file_class
counter += 1
if verbose == 1 and (counter % 5000 == 0 or counter == n_train):
print_progress_bar(counter, n_train, prefix='Embedding training tweets:')
n_test = count_file_lines(tweet_dir + test_tweets)
x_test = np.zeros((n_test, d), dtype = 'float32')
counter = 0
if verbose == 1:
print_progress_bar(0, n_train, prefix='Embedding test tweets: ')
for fn in [tweet_dir + test_tweets]:
with open(fn) as f:
if load_tags:
fn_tag = os.path.splitext(fn)[0] + '_tags.txt'
f_tag = open(fn_tag).readlines()
for line_id, line in enumerate(f):
line = (''.join(line.split(',')[1:])).strip().split()
line_tag = None
if load_tags:
line_tag = (''.join(f_tag[line_id].split(',')[1:])).strip().split()
line = [tok + (tag if tag in pos_to_emb else '') for tok, tag in zip(line, line_tag)]
x_test[counter] = get_emb_sum(embeddings, vocab, line)
counter += 1
if verbose == 1 and (counter % 1000 == 0 or counter == n_test):
print_progress_bar(counter, n_test, prefix='Embedding test tweets: ')
if verbose > 0:
print_header_str('DONE')
print()
return x_train, y_train, x_test
if __name__ == '__main__':
compute_dataset_from_embeddings()