-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
XTEATest_Arduino_style.ino
365 lines (294 loc) · 19.1 KB
/
XTEATest_Arduino_style.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/**
* \file XTEATest_Arduino_style.ino
* \brief XTEA cipher library testing program (C style).
*
* \copyright SPDX-FileCopyrightText: Copyright 2020-2021 Michal Protasowicki
*
* \license SPDX-License-Identifier: MIT
*
*/
#include "Arduino.h"
#include "XTEA-Cipher.h"
#if defined(__AVR_ATmega4808__)
#define Serial Serial1
#endif
void setup()
{
Serial.begin(115200);
Serial.println("Start tests... (Arduino style)");
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
uint8_t key[XTEA_KEY_SIZE] {0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F};
uint8_t iv[XTEA_IV_SIZE] {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17};
uint8_t data[] {0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F};
#if XTEA_ROUNDS == 48
uint8_t encrEcb[] {0x6C, 0xDE, 0x41, 0xA5, 0x51, 0xC1, 0xFA, 0x90, 0xFC, 0xF3, 0x69, 0x9D, 0x2D, 0x49, 0x64, 0x79,
0x48, 0xDE, 0x31, 0xAC, 0x3C, 0xBA, 0xE4, 0x41, 0x26, 0x02, 0xC2, 0xF6, 0xA9, 0xCA, 0x11, 0x07,
0x5C, 0xF2, 0xC4, 0xAA, 0xB3, 0xEA, 0x6C, 0xD7, 0x84, 0xAF, 0xDF, 0xBA, 0x1E, 0x61, 0xBA, 0x68,
0xE4, 0xB8, 0xCA, 0xC7, 0xD9, 0xF7, 0x08, 0x1A, 0x46, 0xBD, 0x0A, 0x37, 0x86, 0xD7, 0xF1, 0x45};
uint8_t encrCfb[] {0x74, 0xB1, 0x75, 0x6B, 0xBF, 0x26, 0xA3, 0x3F, 0x87, 0x0C, 0x21, 0x98, 0x71, 0x9F, 0x5D, 0x20,
0xAB, 0x6F, 0x70, 0xF9, 0x41, 0x46, 0x1D, 0x0B, 0x9B, 0x36, 0x0E, 0x29, 0xCD, 0x3E, 0xAF, 0x7B,
0xE6, 0xAD, 0x40, 0x22, 0xA0, 0xA3, 0xF7, 0x93, 0x84, 0x60, 0x05, 0xD3, 0x4A, 0xEE, 0xAF, 0x01,
0x3E, 0xD4, 0x08, 0x09, 0x32, 0x0D, 0xFE, 0xF3, 0xC1, 0x93, 0x45, 0x00, 0x0A, 0x7A, 0xB9, 0x27};
uint8_t encrOfb[] {0x74, 0xB1, 0x75, 0x6B, 0xBF, 0x26, 0xA3, 0x3F, 0x0A, 0x4E, 0x4F, 0xFF, 0x6B, 0xD3, 0xEA, 0x1E,
0x32, 0x0C, 0x9E, 0x7C, 0xCA, 0x9C, 0xAE, 0x28, 0xBB, 0x14, 0x87, 0xFF, 0xCA, 0xAE, 0x39, 0xF9,
0x3E, 0x56, 0x13, 0x34, 0x19, 0xD9, 0x8E, 0xD3, 0x49, 0x03, 0x5B, 0xF9, 0x0E, 0x4C, 0xE3, 0x94,
0x0E, 0x8D, 0xF0, 0xE3, 0x06, 0xBB, 0x2B, 0x5C, 0x59, 0x1A, 0xDE, 0x5B, 0x51, 0xA5, 0x7C, 0xB5};
#elif XTEA_ROUNDS == 32
uint8_t encrEcb[] {0x0E, 0xA2, 0x4F, 0x26, 0xCD, 0xDD, 0x01, 0x75, 0x4D, 0x3C, 0x3A, 0xCD, 0xC8, 0x01, 0x45, 0x77,
0x41, 0x0A, 0x49, 0xB8, 0xAD, 0xA5, 0x90, 0x0A, 0xD5, 0x83, 0xA5, 0xD7, 0xC0, 0xF0, 0x33, 0xA0,
0x09, 0xC5, 0xA5, 0xC3, 0x5D, 0x63, 0x76, 0xDC, 0x3C, 0x39, 0xCE, 0x44, 0xFF, 0x57, 0x45, 0x4C,
0xD2, 0xD8, 0x5A, 0x95, 0x03, 0x8C, 0x3B, 0x89, 0xCE, 0x59, 0xB7, 0x7C, 0x00, 0x2F, 0x6D, 0x80};
uint8_t encrCfb[] {0xEA, 0x1A, 0x8B, 0xF2, 0xD1, 0x8D, 0xBF, 0xBC, 0xA6, 0x83, 0x9E, 0xAF, 0x92, 0x3C, 0x0B, 0x2A,
0x20, 0xA3, 0x21, 0xC1, 0x85, 0x8F, 0xA0, 0xE6, 0x03, 0x72, 0x4D, 0xD6, 0x5C, 0xB2, 0x1C, 0x2A,
0xEE, 0x9D, 0x42, 0x07, 0xED, 0x1C, 0x31, 0xE3, 0x43, 0x41, 0x77, 0xB7, 0xA2, 0x5B, 0xA6, 0xEB,
0xED, 0xB7, 0x04, 0xC9, 0xBB, 0x15, 0xEC, 0xE3, 0xDB, 0x67, 0xDE, 0x0F, 0xA8, 0xC5, 0x09, 0xB4};
uint8_t encrOfb[] {0xEA, 0x1A, 0x8B, 0xF2, 0xD1, 0x8D, 0xBF, 0xBC, 0x99, 0xC6, 0x96, 0xB8, 0x05, 0x93, 0xBD, 0xDB,
0xA5, 0xDA, 0x81, 0xFB, 0x2A, 0x50, 0x35, 0x77, 0xCB, 0x28, 0xD4, 0x3F, 0x78, 0x71, 0xE9, 0x07,
0x08, 0x79, 0xEF, 0x9F, 0xB0, 0x22, 0x5E, 0xA3, 0x9F, 0xB1, 0x6D, 0xB0, 0x2E, 0x4D, 0x75, 0x49,
0x8F, 0x93, 0x26, 0x7E, 0x58, 0x16, 0x42, 0x45, 0xB7, 0x05, 0x56, 0x27, 0xE3, 0xA7, 0xAD, 0x0F};
#elif XTEA_ROUNDS == 24
uint8_t encrEcb[] {0xC2, 0x5E, 0x11, 0x24, 0xCE, 0x27, 0x92, 0x07, 0xDD, 0x2A, 0x4D, 0x69, 0xD0, 0x45, 0xA2, 0xF8,
0x9B, 0x82, 0x64, 0xC5, 0x88, 0x50, 0x40, 0x07, 0xC0, 0xCD, 0x97, 0x41, 0x6A, 0xD7, 0x3F, 0xC5,
0x72, 0x95, 0xBB, 0xF4, 0xDB, 0xCE, 0x6B, 0x9B, 0xD9, 0x93, 0x7F, 0x75, 0x4B, 0x33, 0x5F, 0xFB,
0x20, 0x06, 0x89, 0xC6, 0xC8, 0xE8, 0x6C, 0xFF, 0x85, 0x08, 0xCD, 0x13, 0x36, 0x93, 0x1E, 0xC1};
uint8_t encrCfb[] {0xB1, 0x2D, 0x1C, 0x4B, 0x16, 0x89, 0x41, 0xBD, 0x6E, 0x87, 0xBF, 0xCF, 0x5F, 0x71, 0x5E, 0x86,
0x1C, 0x7A, 0x8B, 0x18, 0xFD, 0x3E, 0x03, 0x28, 0x60, 0x2B, 0x27, 0xFF, 0x2D, 0xE2, 0x47, 0xFC,
0x25, 0x29, 0xE0, 0x98, 0xB3, 0x71, 0x53, 0x2B, 0xF5, 0x03, 0x9A, 0x3A, 0x24, 0x90, 0xD1, 0x83,
0xA8, 0xD5, 0x5D, 0xE4, 0xA8, 0x47, 0x9C, 0xE1, 0xD3, 0x1B, 0x9F, 0x4D, 0x4E, 0xD6, 0xD3, 0xB2};
uint8_t encrOfb[] {0xB1, 0x2D, 0x1C, 0x4B, 0x16, 0x89, 0x41, 0xBD, 0x73, 0x7B, 0xC6, 0x31, 0xCA, 0xF5, 0x99, 0x08,
0x3C, 0x6D, 0xBD, 0x76, 0x30, 0x39, 0x9B, 0xF7, 0xD2, 0xFA, 0x13, 0xAA, 0x6F, 0x7B, 0xFF, 0x4B,
0xC8, 0x02, 0x75, 0x1D, 0xDB, 0x09, 0xE0, 0x74, 0xCD, 0x85, 0x04, 0x8E, 0x7F, 0x5F, 0xA3, 0x18,
0xD5, 0x9F, 0x69, 0xA0, 0xE6, 0xCC, 0x57, 0xCE, 0x31, 0x7A, 0x6C, 0x92, 0x67, 0x91, 0x88, 0xDD};
#else
uint8_t encrEcb[sizeof(data)] {0x00};
uint8_t encrCfb[sizeof(data)] {0x00};
uint8_t encrOfb[sizeof(data)] {0x00};
#endif
uint8_t encrData[] {0xEA, 0x1A, 0x8B, 0xF2, 0xD1, 0x8D, 0xBF, 0xBC, 0xA6, 0x83, 0x9E, 0xAF, 0x92, 0x3C, 0x0B, 0x2A,
0x20, 0xA3, 0x21, 0xC1, 0x85, 0x8F, 0xA0, 0xE6, 0x03, 0x72, 0x4D, 0xD6, 0x5C, 0xB2, 0x1C, 0x2A,
0xEE, 0x9D, 0x42, 0x07, 0xED, 0x1C, 0x31, 0xE3, 0x43, 0x41, 0x77, 0xB7, 0xA2, 0x5B, 0xA6, 0xEB,
0xED, 0xB7, 0x04, 0xC9, 0xBB, 0x15, 0xEC, 0xE3, 0xDB, 0x67, 0xDE, 0x0F, 0xA8, 0xC5, 0x09, 0xB4};
#if XTEA_MAC_ROUNDS == 32
uint8_t mac7Bytes[] {0x7D, 0x8F, 0xE6, 0xDD, 0x6C, 0x27, 0x80, 0x36};
uint8_t macAllBytes[] {0x47, 0x0C, 0xD1, 0x9F, 0x44, 0x2D, 0xFC, 0xD9};
uint8_t macAADCiph[] {0x72, 0x0D, 0x46, 0xB4, 0xD4, 0x51, 0xA8, 0xAD};
#elif XTEA_MAC_ROUNDS == 24
uint8_t mac7Bytes[] {0xAA, 0xA0, 0x81, 0xB0, 0xEB, 0xC2, 0x0E, 0x43};
uint8_t macAllBytes[] {0x36, 0x38, 0xA7, 0xF5, 0xED, 0xD3, 0x73, 0x6A};
uint8_t macAADCiph[] {0x3E, 0x5C, 0x43, 0xC0, 0x12, 0xE9, 0x12, 0x08};
#elif XTEA_MAC_ROUNDS == 20
uint8_t mac7Bytes[] {0x7D, 0x18, 0xA1, 0x45, 0x16, 0x15, 0xB3, 0x60};
uint8_t macAllBytes[] {0x2D, 0xFA, 0x79, 0x7B, 0x17, 0x59, 0xFF, 0x5F};
uint8_t macAADCiph[] {0x29, 0x6E, 0x6D, 0xC1, 0xC1, 0x5B, 0x26, 0xBB};
#else
uint8_t mac7Bytes[] {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t macAllBytes[] {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t macAADCiph[] {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
#endif
uint8_t resultBuffer[sizeof(data)];
uint8_t block[XTEA_BLOCK_SIZE] {0};
uint32_t start;
uint32_t time;
uint8_t chunks = sizeof(data) / XTEA_BLOCK_SIZE;
uint8_t shift = 0;
String timeStr = " time [us]: ";
String tiblStr = " time [us]/block: ";
String usStr = ") [us]: ";
String chkStr = "\t Checking data with test vector: ";
String encStr = "Encrypt";
String decStr = "Decrypt";
String pasStr = "PASS";
String faiStr = "FAIL";
String allStr = " ALL loops (n = ";
String cfbMac = "CFB-MAC";
String resultStr;
//----------------------------------------------------
xtea.begin(XTEA_ROUNDS, XTEA_MAC_ROUNDS);
Serial.println("XTEA_ROUNDS = " + String(XTEA_ROUNDS) + " XTEA_MAC_ROUNDS = " + String(XTEA_MAC_ROUNDS));
Serial.println("ECB:");
start = micros();
memcpy(resultBuffer, data, sizeof(data)); // copying data to be encrypted into a buffer
xtea.ecbEncrypt(key, resultBuffer, sizeof(data)); // data encryption in ECB mode
time = micros() - start;
// compare the contents of buffer after encryption with reference data and print results
Serial.print(encStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, encrEcb, sizeof(encrEcb))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
start = micros();
memcpy(resultBuffer, encrEcb, sizeof(data)); // copying data to be decrypted into a buffer
xtea.ecbDecrypt(key, resultBuffer, sizeof(data)); // data decryption in ECB mode
time = micros() - start;
// compare the contents of buffer after decryption with reference data and print results
Serial.print(decStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, data, sizeof(data))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
Serial.println("");
//----------------------------------------------------
Serial.println("CFB:");
start = micros();
memcpy(resultBuffer, data, sizeof(data)); // copying data to be encrypted into a buffer
xtea.cfbEncrypt(key, iv, resultBuffer, sizeof(data)); // data encryption in CFB mode
time = micros() - start;
// compare the contents of buffer after encryption with reference data and print results
Serial.print(encStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, encrCfb, sizeof(encrCfb))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
start = micros();
memcpy(resultBuffer, encrCfb, sizeof(data)); // copying data data to be decrypted into buffer
xtea.cfbDecrypt(key, iv, resultBuffer, sizeof(data)); // data decryption in CFB mode
time = micros() - start;
// compare the contents of buffer after decryption with reference data and print results
Serial.print(decStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, data, sizeof(data))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
Serial.println("");
//----------------------------------------------------
Serial.println("CFB (data size less than block size):");
constexpr uint8_t smallBufferSize {(1 * XTEA_BLOCK_SIZE) - 2};
uint8_t smallBuffer[smallBufferSize];
start = micros();
memcpy(smallBuffer, data, smallBufferSize); // copying data to be encrypted into a buffer
xtea.cfbEncrypt(key, iv, smallBuffer, smallBufferSize); // data encryption in CFB mode
time = micros() - start;
// compare the contents of buffer after encryption with reference data and print results
Serial.print(encStr + tiblStr + String(time / ((smallBufferSize / XTEA_BLOCK_SIZE) + 1)));
resultStr = (0 == memcmp(smallBuffer, encrCfb, smallBufferSize)) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
start = micros();
memcpy(smallBuffer, encrCfb, smallBufferSize); // copying data data to be decrypted into buffer
xtea.cfbDecrypt(key, iv, smallBuffer, smallBufferSize); // data decryption in CFB mode
time = micros() - start;
// compare the contents of buffer after decryption with reference data and print results
Serial.print(decStr + tiblStr + String(time / ((smallBufferSize / XTEA_BLOCK_SIZE) + 1)));
resultStr = (0 == memcmp(smallBuffer, data, smallBufferSize)) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
Serial.println("");
//----------------------------------------------------
Serial.println("OFB:");
start = micros();
memcpy(resultBuffer, data, sizeof(data)); // copying data to be encrypted into a buffer
xtea.ofbEncrypt(key, iv, resultBuffer, sizeof(data)); // data encryption in OFB mode
time = micros() - start;
// compare the contents of buffer after encryption with reference data and print results
Serial.print(encStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, encrOfb, sizeof(encrOfb))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
start = micros();
memcpy(resultBuffer, encrOfb, sizeof(data)); // copying data data to be decrypted into buffer
xtea.ofbDecrypt(key, iv, resultBuffer, sizeof(data)); // data decryption in OFB mode
time = micros() - start;
// compare the contents of buffer after decryption with reference data and print results
Serial.print(decStr + tiblStr + String(time / chunks));
resultStr = (0 == memcmp(resultBuffer, data, sizeof(data))) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
Serial.println("");
//----------------------------------------------------
// Function tests for calculating MAC codes.
Serial.println(cfbMac + ":");
uint_fast16_t counts = 1000;
start = micros();
for (uint_fast16_t i = 0; i < counts; i++)
{
xtea.macInit(key); // context initialization for MAC functions
__asm__ volatile(""); // prevents compiler from optimizing loop
}
time = micros() - start;
Serial.println(cfbMac + " init" + timeStr + String(time / counts) + "\t\t\t\t\t" + allStr + String(counts) + usStr + String(time));
start = micros();
for (uint_fast16_t i = 0; i < counts; i++)
{
xtea.macUpdate(data, XTEA_BLOCK_SIZE); // updating MAC code calculations for new data
__asm__ volatile(""); // prevents compiler from optimizing loop
}
time = micros() - start;
Serial.println(cfbMac + " update" + timeStr + String(time / counts) + "\t\t\t\t" + allStr + String(counts) + usStr + String(time));
start = micros();
for (uint_fast16_t i = 0; i < counts; i++)
{
xtea.macFinish(); // calculating final MAC code after entering all data
__asm__ volatile(""); // prevents compiler from optimizing loop
}
time = micros() - start;
Serial.println(cfbMac + " finish [worst case]" + timeStr + String(time / counts) + "\t" + allStr + String(counts) + usStr + String(time));
start = micros();
for (uint_fast16_t i = 0; i < counts; i++)
{
xtea.macGet(block); // fetching MAC code from context
__asm__ volatile(""); // prevents compiler from optimizing loop
}
time = micros() - start;
Serial.println(cfbMac + " get MAC" + timeStr + String(time / counts) + "\t\t\t\t" + allStr + String(counts) + usStr + String(time));
start = micros();
for (uint_fast16_t i = 0; i < counts; i++)
{
xtea.macCmp(block); // verification of passed MAC code with the previously calculated
// on the basis of passed data
__asm__ volatile(""); // prevents compiler from optimizing loop
}
time = micros() - start;
Serial.println(cfbMac + " check MAC" + timeStr + String(time / counts) + "\t\t\t\t" + allStr + String(counts) + usStr + String(time));
Serial.println("");
//----------------------------------------------------
// calculating a MAC code for data in an amount less than one complete data block.
start = micros();
xtea.macCompute(key, block, data, 7);
time = micros() - start;
Serial.print(cfbMac + " Compute (7 bytes of data) " + tiblStr + String(time));
resultStr = (0 == memcmp(block, mac7Bytes, XTEA_BLOCK_SIZE)) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
// MAC code calculation for more data
start = micros();
xtea.macCompute(key, block, data, sizeof(data));
time = micros() - start;
Serial.print(cfbMac + " Compute (all bytes of data)" + tiblStr + String(time / (chunks + 1)));
resultStr = (0 == memcmp(block, macAllBytes, XTEA_BLOCK_SIZE)) ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
// MAC code verification for passed data
start = micros();
boolean cmpResult = xtea.macVerify(key, macAllBytes, data, sizeof(data));
time = micros() - start;
Serial.print(cfbMac + " Verify (all bytes of data)" + tiblStr + String(time / (chunks + 1)));
resultStr = cmpResult ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
//----------------------------------------------------
Serial.print(cfbMac + " code authentication of unencrypted data and cryptogram:");
// MAC code calculation and verification for combined unencrypted and encrypted data.
uint32_t dataSize {toBigEndian(sizeof(iv))}; // Change in endianity so that the data for calculating the MAC code
// is the same on devices having different endianities.
uint8_t * dPtr {(uint8_t *)&dataSize}; // allows access to uint_32_t variable as uint8_t[]
xtea.macInit(key); // context initialization for MAC function
xtea.macUpdate(dPtr, sizeof(uint32_t)); // MAC code calculation for unencrypted data
xtea.macUpdate(iv, sizeof(iv));
dataSize = toBigEndian(sizeof(encrData)); // continue MAC code calculation for encrypted data
xtea.macUpdate(dPtr, sizeof(uint32_t));
xtea.macUpdate(encrData, sizeof(encrData));
xtea.macFinish(); // calculating final MAC code after entering all data
xtea.macGet(block); // fetching MAC code
cmpResult = xtea.macCmp(macAADCiph); // verification of passed MAC code with the previously calculated
resultStr = cmpResult ? pasStr : faiStr;
Serial.println(chkStr + resultStr);
Serial.println("End tests.");
}
// the loop function runs over and over again forever
void loop()
{
digitalWrite(LED_BUILTIN, HIGH);
delay(50);
digitalWrite(LED_BUILTIN, LOW);
delay(1950);
}
//----------------------------------------------------
uint32_t toBigEndian(uint32_t x)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return __builtin_bswap32(x);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return x;
#else
#error "Unsupported hardware !!!"
#endif
}