-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathstep3_evaluate.py
336 lines (276 loc) · 12.1 KB
/
step3_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import json
import re
import subprocess
from collections import defaultdict
from re import RegexFlag
import networkx as nx
import torch
from genre.fairseq_model import GENRE, mGENRE
from genre.entity_linking import get_end_to_end_prefix_allowed_tokens_fn_fairseq as get_prefix_allowed_tokens_fn
from genre.trie import Trie
from semparse.sql.spider import load_original_schemas, load_tables
from semparse.worlds.evaluate_spider import evaluate as evaluate_sql
from step1_schema_linking import read_database_schema
database_dir='./data/spider/database'
database_schema_filename = './data/spider/tables.json'
schema_tokens, column_names, database_schemas = read_database_schema(database_schema_filename)
with open(f'./data/spider/dev.json', 'r', encoding='utf-8') as f:
item = json.load(f)
sql_to_db = []
for i in item:
sql_to_db.append(i['db_id'])
def post_processing_sql(p_sql, foreign_key_maps, schemas, o_schemas):
foreign_key = {}
for k, v in foreign_key_maps.items():
if k == v:
continue
key = ' '.join(sorted([k.split('.')[0].strip('_'), v.split('.')[0].strip('_')]))
foreign_key[key] = (k.strip('_').replace('.', '@'), v.strip('_').replace('.', '@'))
primary_key = {}
for t in o_schemas.tables:
table = t.orig_name.lower()
if len(t.primary_keys) == 0:
continue
column = t.primary_keys[0].orig_name.lower()
primary_key[table] = f'{table}@{column}'
p_sql = re.sub(r'(=)(\S+)', r'\1 \2', p_sql)
p_sql = p_sql.split()
columns = ['*']
tables = []
for table, column_list in schemas.schema.items():
for column in column_list:
columns.append(f"{table}@{column}")
tables.append(table)
# infer table from mentioned column
all_from_table_ids = set()
from_idx = where_idx = group_idx = order_idx = -1
for idx, token in enumerate(p_sql):
if '@' in token and token in columns:
all_from_table_ids.add(schemas.idMap[token.split('@')[0]])
if token == 'from' and from_idx == -1:
from_idx = idx
if token == 'where' and where_idx == -1:
where_idx = idx
if token == 'group' and group_idx == -1:
group_idx = idx
if token == 'order' and order_idx == -1:
order_idx = idx
#don't process nested SQL (more than one select)
if len(re.findall('select', ' '.join(p_sql))) > 1 or len(all_from_table_ids) == 0:
return ' '.join(p_sql)
covered_tables = set()
candidate_table_ids = sorted(all_from_table_ids)
start_table_id = candidate_table_ids[0]
conds = set()
all_conds = []
for table_id in candidate_table_ids[1:]:
if table_id in covered_tables:
continue
try:
path = nx.shortest_path(
o_schemas.foreign_key_graph,
source=start_table_id,
target=table_id,
)
except (nx.NetworkXNoPath, nx.NodeNotFound):
covered_tables.add(table_id)
continue
for source_table_id, target_table_id in zip(path, path[1:]):
if target_table_id in covered_tables:
continue
covered_tables.add(target_table_id)
all_from_table_ids.add(target_table_id)
col1, col2 = o_schemas.foreign_key_graph[source_table_id][target_table_id]["columns"]
all_conds.append((columns[col1], columns[col2]))
conds.add((tables[source_table_id],
tables[target_table_id],
columns[col1],
columns[col2]))
all_from_table_ids = list(all_from_table_ids)
try:
tokens = ["from", tables[all_from_table_ids[0]]]
for i, table_id in enumerate(all_from_table_ids[1:]):
tokens += ["join"]
tokens += [tables[table_id]]
tokens += ["on", all_conds[i][0], "=", all_conds[i][1]]
except:
return ' '.join(p_sql)
if where_idx != -1:
p_sql = p_sql[:from_idx] + tokens + p_sql[where_idx:]
elif group_idx != -1:
p_sql = p_sql[:from_idx] + tokens + p_sql[group_idx:]
elif order_idx != -1:
p_sql = p_sql[:from_idx] + tokens + p_sql[order_idx:]
elif len(p_sql[:from_idx] + p_sql[from_idx:]) == len(p_sql):
p_sql = p_sql[:from_idx] + tokens
return ' '.join(p_sql)
def extract_structure_data(plain_text_content: str):
def sort_by_id(data):
data.sort(key=lambda x: int(x.split('\t')[0][2:]))
return data
data = []
original_schemas = load_original_schemas(database_schema_filename)
schemas, eval_foreign_key_maps = load_tables(database_schema_filename)
predict_outputs = sort_by_id(re.findall("^D.+", plain_text_content, RegexFlag.MULTILINE))
ground_outputs = sort_by_id(re.findall("^T.+", plain_text_content, RegexFlag.MULTILINE))
source_inputs = sort_by_id(re.findall("^S.+", plain_text_content, RegexFlag.MULTILINE))
for idx, (predict, ground, source) in enumerate(zip(predict_outputs, ground_outputs, source_inputs)):
predict_id, predict_score, predict_clean = predict.split('\t')
ground_id, ground_clean = ground.split('\t')
source_id, source_clean = source.split('\t')
db_id = sql_to_db[idx]
#try to postprocess the incomplete sql from
# (1) correcting the COLUMN in ON_CLAUSE based on foreign key graph
# (2) adding the underlying TABLE via searching shortest path
predict_clean = post_processing_sql(predict_clean, eval_foreign_key_maps[db_id], original_schemas[db_id],
schemas[db_id])
data.append((predict_id[2:], source_clean.split('<Q>')[-1].strip(), ground_clean, predict_clean, db_id))
return data
def evaluate(data):
def evaluate_example(_predict_str: str, _ground_str: str):
return re.sub("\s+", "", _predict_str.lower()) == re.sub("\s+", "", _ground_str.lower())
correct_num = 0
correct_tag_list = []
total = 0
tmp = []
for example in data:
idx, source_str, ground_str, predict_str, db_id = example
total += 1
try:
sql_match = evaluate_sql(gold=ground_str.replace('@', '.'),
predict=predict_str.replace('@', '.'),
db_name=db_id,
db_dir=database_dir,
table=database_schema_filename)
except:
print(predict_str)
sql_match = False
if (sql_match or evaluate_example(predict_str, ground_str)):
is_correct = True
correct_num += 1
else:
is_correct = False
tmp.append(is_correct)
correct_tag_list.append(is_correct)
print("Correct/Total : {}/{}, {:.4f}".format(correct_num, total, correct_num / total))
return correct_tag_list, correct_num, total
def predict_and_evaluate(model_path, dataset_path, constrain):
if constrain:
data = predict_with_constrain(
model_path=model_path,
dataset_path=dataset_path
)
else:
decode_without_constrain(
model_path=model_path,
dataset_path=dataset_path
)
with open('./eval/generate-valid.txt', "r", encoding="utf8") as generate_f:
file_content = generate_f.read()
data = extract_structure_data(file_content)
correct_arr, correct_num, total = evaluate(data)
with open('./eval/spider_eval.txt', "w", encoding="utf8") as eval_file:
for example, correct in zip(data, correct_arr):
eval_file.write(str(correct) + "\n" + "\n".join(
[example[0], "db: " + example[-1], example[1], "gold: " + example[2], "pred: " + example[3]]) + "\n\n")
return correct_num, total
def get_alias_schema(schemas):
alias_schema = {}
for db in schemas:
schema = schemas[db].orig
collect = []
for i, (t, c) in enumerate(zip(schema['column_types'], schema['column_names_original'])):
if c[0] == -1:
collect.append('*')
else:
column_with_alias = "{0}@{1}".format(schema['table_names_original'][c[0]].lower(), c[1].lower())
collect.append(column_with_alias)
for t in schema['table_names_original']:
collect.append(t.lower())
collect.append("'value'")
alias_schema[db] = collect
return alias_schema
def predict_with_constrain(model_path, dataset_path):
schemas, eval_foreign_key_maps = load_tables(database_schema_filename)
original_schemas = load_original_schemas(database_schema_filename)
with open(f'{dataset_path}/dev.src', 'r', encoding='utf-8') as f:
item = [i.strip() for i in f.readlines()]
with open(f'{dataset_path}/dev.tgt', 'r', encoding='utf-8') as f:
ground = [i.strip() for i in f.readlines()]
alias_schema = get_alias_schema(schemas)
item_db_cluster = defaultdict(list)
ground_db_cluster = defaultdict(list)
source_db_cluster = defaultdict(list)
num_example = 1034
for db, sentence, g_sql in zip(sql_to_db[:num_example], item[:num_example], ground[:num_example]):
source = sentence.split('<Q>')[-1].strip()
item_db_cluster[db].append(sentence)
ground_db_cluster[db].append(g_sql)
source_db_cluster[db].append(source)
source = []
ground = []
for db, sentence in source_db_cluster.items():
source.extend(sentence)
for db, g_SQL in ground_db_cluster.items():
ground.extend(g_SQL)
model = GENRE.from_pretrained(model_path).eval()
if torch.cuda.is_available():
model.cuda()
result=[]
for db, sentence in item_db_cluster.items():
print(f'processing db: {db} with {len(sentence)} sentences')
rnt=decode_with_constrain(sentence, alias_schema[db], model)
result.extend([i[0]['text'] if isinstance(i[0]['text'], str) else i[0]['text'][0] for i in rnt])
eval_file_path= f'./eval/generate-valid-constrain.txt'
with open(eval_file_path, "w", encoding="utf8") as f:
f.write('\n'.join(result))
# result = []
# with open(f'./eval/generate-valid-constrain.txt', "r", encoding="utf8") as f:
# for idx, (sent, db_id) in enumerate(zip(f.readlines(), sql_to_db)):
# result.append(sent.strip())
data = []
for predict_id, (predict_clean, ground_clean, source_clean, db_id) in enumerate(
zip(result, ground, source, sql_to_db)):
predict_clean = post_processing_sql(predict_clean, eval_foreign_key_maps[db_id], original_schemas[db_id],
schemas[db_id])
data.append((str(predict_id), source_clean.split('<Q>')[-1].strip(), ground_clean, predict_clean, db_id))
return data
def decode_with_constrain(sentences, schema, model):
trie = Trie([
model.encode(" {}".format(e))[1:].tolist()
for e in schema
])
prefix_allowed_tokens_fn = get_prefix_allowed_tokens_fn(
model,
sentences,
mention_trie=trie,
)
return model.sample(
sentences,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
)
def decode_without_constrain( model_path, dataset_path):
cmd = f'fairseq-generate \
--path {model_path}/model.pt {dataset_path}/bin \
--gen-subset valid \
--nbest 1 \
--max-tokens 4096 \
--source-lang src --target-lang tgt \
--results-path ./eval \
--beam 5 \
--bpe gpt2 \
--remove-bpe \
--skip-invalid-size-inputs-valid-test'
subprocess.Popen(
cmd, universal_newlines=True, shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default='./models/spider_sl')
parser.add_argument("--dataset_path", default='./dataset_post/spider_sl')
parser.add_argument("--constrain", action='store_true')
args = parser.parse_args()
predict_and_evaluate(model_path=args.model_path,
dataset_path=args.dataset_path,
constrain=args.constrain)