-
Notifications
You must be signed in to change notification settings - Fork 344
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Can not reproduce the evaluation results of small model on 6k multi-ref dataset #63
Comments
This is the evaluation result of the medium model and the large model. It can be seen that the gap between NIST/BLEU/DIST and the official results is relatively large. DialoGPT-mediumNIST: [3.6142, 4.1402, 4.2257, 4.2379] DialoGPT-largeNIST: [3.9302, 4.5571, 4.6678, 4.6848] Official
|
Hello! |
The evaluation code is almost the same as the official. # Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import re
from collections import defaultdict
import argparse
from pathlib import Path
import os, time, subprocess, io, sys, re, argparse
import numpy as np
py_version = sys.version.split('.')[0]
if py_version == '2':
open = io.open
else:
unicode = str
def makedirs(fld):
if not os.path.exists(fld):
os.makedirs(fld)
cur_dir = str(Path(__file__).parent)
def str2bool(s):
# to avoid issue like this: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
if s.lower() in ['t','true','1','y']:
return True
elif s.lower() in ['f','false','0','n']:
return False
else:
raise ValueError
def calc_nist_bleu(path_refs, path_hyp, fld_out='temp', n_lines=None):
# call mteval-v14c.pl
# ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14c.pl
# you may need to cpan install XML:Twig Sort:Naturally String:Util
makedirs(fld_out)
if n_lines is None:
n_lines = len(open(path_refs[0], encoding='utf-8').readlines())
# import pdb; pdb.set_trace()
_write_xml([''], fld_out + '/src.xml', 'src', n_lines=n_lines)
_write_xml([path_hyp], fld_out + '/hyp.xml', 'hyp')#, n_lines=n_lines)
_write_xml(path_refs, fld_out + '/ref.xml', 'ref')#, n_lines=n_lines)
time.sleep(1)
cmd = [
'perl',f'{cur_dir}/mteval-v14c.pl',
'-s', '%s/src.xml'%fld_out,
'-t', '%s/hyp.xml'%fld_out,
'-r', '%s/ref.xml'%fld_out,
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
# import pdb; pdb.set_trace()
output, error = process.communicate()
lines = output.decode().split('\n')
try:
nist = lines[-6].strip('\r').split()[1:5]
bleu = lines[-4].strip('\r').split()[1:5]
return [float(x) for x in nist], [float(x) for x in bleu]
except Exception:
print('mteval-v14c.pl returns unexpected message')
print('cmd = '+str(cmd))
print(output.decode())
print(error.decode())
return [-1]*4, [-1]*4
def calc_cum_bleu(path_refs, path_hyp):
# call multi-bleu.pl
# https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
# the 4-gram cum BLEU returned by this one should be very close to calc_nist_bleu
# however multi-bleu.pl doesn't return cum BLEU of lower rank, so in nlp_metrics we preferr calc_nist_bleu
# NOTE: this func doesn't support n_lines argument and output is not parsed yet
process = subprocess.Popen(
['perl', f'{cur_dir}/multi-bleu.perl'] + path_refs,
stdout=subprocess.PIPE,
stdin=subprocess.PIPE
)
with open(path_hyp, encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
process.stdin.write(line.encode())
output, error = process.communicate()
return output.decode()
def calc_meteor(path_refs, path_hyp, fld_out='temp', n_lines=None, pretokenized=True):
# Call METEOR code.
# http://www.cs.cmu.edu/~alavie/METEOR/index.html
makedirs(fld_out)
path_merged_refs = fld_out + '/refs_merged.txt'
_write_merged_refs(path_refs, path_merged_refs)
cmd = [
'java', '-Xmx1g', # heapsize of 1G to avoid OutOfMemoryError
'-jar', f'{cur_dir}/meteor-1.5/meteor-1.5.jar',
path_hyp, path_merged_refs,
'-r', '%i'%len(path_refs), # refCount
'-l', 'en', '-norm' # also supports language: cz de es fr ar
]
# print(cmd)
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
for line in output.decode().split('\n'):
if "Final score:" in line:
return float(line.split()[-1])
print('meteor-1.5.jar returns unexpected message')
print("cmd = " + " ".join(cmd))
print(output.decode())
print(error.decode())
return -1
def calc_entropy(path_hyp, n_lines=None):
# based on Yizhe Zhang's code
etp_score = [0.0,0.0,0.0,0.0]
counter = [defaultdict(int),defaultdict(int),defaultdict(int),defaultdict(int)]
i = 0
for line in open(path_hyp, encoding='utf-8'):
i += 1
words = line.strip('\n').split()
for n in range(4):
for idx in range(len(words)-n):
ngram = ' '.join(words[idx:idx+n+1])
counter[n][ngram] += 1
if i == n_lines:
break
for n in range(4):
total = sum(counter[n].values())
for v in counter[n].values():
etp_score[n] += - v /total * (np.log(v) - np.log(total))
return etp_score
def calc_len(path, n_lines):
l = []
for line in open(path, encoding='utf8'):
l.append(len(line.strip('\n').split()))
if len(l) == n_lines:
break
return np.mean(l)
def calc_diversity(path_hyp):
tokens = [0.0,0.0]
types = [defaultdict(int),defaultdict(int)]
for line in open(path_hyp, encoding='utf-8'):
words = line.strip('\n').split()
for n in range(2):
for idx in range(len(words)-n):
ngram = ' '.join(words[idx:idx+n+1])
types[n][ngram] = 1
tokens[n] += 1
div1 = len(types[0].keys())/tokens[0]
div2 = len(types[1].keys())/tokens[1]
return [div1, div2]
def nlp_metrics(path_refs, path_hyp, fld_out='temp', n_lines=None):
nist, bleu = calc_nist_bleu(path_refs, path_hyp, fld_out, n_lines)
meteor = calc_meteor(path_refs, path_hyp, fld_out, n_lines)
entropy = calc_entropy(path_hyp, n_lines)
div = calc_diversity(path_hyp)
avg_len = calc_len(path_hyp, n_lines)
return nist, bleu, meteor, entropy, div, avg_len
def _write_merged_refs(paths_in, path_out, n_lines=None):
# prepare merged ref file for meteor-1.5.jar (calc_meteor)
# lines[i][j] is the ref from i-th ref set for the j-th query
lines = []
for path_in in paths_in:
lines.append([line.strip('\n') for line in open(path_in, encoding='utf-8')])
with open(path_out, 'w', encoding='utf-8') as f:
for j in range(len(lines[0])):
for i in range(len(paths_in)):
f.write(unicode(lines[i][j]) + "\n")
def _write_xml(paths_in, path_out, role, n_lines=None):
# prepare .xml files for mteval-v14c.pl (calc_nist_bleu)
# role = 'src', 'hyp' or 'ref'
lines = [
'<?xml version="1.0" encoding="UTF-8"?>',
'<!DOCTYPE mteval SYSTEM "">',
'<!-- generated by https://github.com/golsun/NLP-tools -->',
'<!-- from: %s -->'%paths_in,
'<!-- as inputs for ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14c.pl -->',
'<mteval>',
]
for i_in, path_in in enumerate(paths_in):
# header ----
if role == 'src':
lines.append('<srcset setid="unnamed" srclang="src">')
set_ending = '</srcset>'
elif role == 'hyp':
lines.append('<tstset setid="unnamed" srclang="src" trglang="tgt" sysid="unnamed">')
set_ending = '</tstset>'
elif role == 'ref':
lines.append('<refset setid="unnamed" srclang="src" trglang="tgt" refid="ref%i">'%i_in)
set_ending = '</refset>'
lines.append('<doc docid="unnamed" genre="unnamed">')
# body -----
if role == 'src':
body = ['__src__'] * n_lines
else:
with open(path_in, 'r', encoding='utf-8') as f:
body = f.readlines()
if n_lines is not None:
body = body[:n_lines]
#for i in range(len(body)):
i = 0
for b in body:
line = b.strip('\n')
line = line.replace('&',' ').replace('<',' ') # remove illegal xml char
# if len(line) > 0:
lines.append('<p><seg id="%i"> %s </seg></p>'%(i + 1, line))
i += 1
# ending -----
lines.append('</doc>')
if role == 'src':
lines.append('</srcset>')
elif role == 'hyp':
lines.append('</tstset>')
elif role == 'ref':
lines.append('</refset>')
lines.append('</mteval>')
with open(path_out, 'w', encoding='utf-8') as f:
f.write(unicode('\n'.join(lines)))
def dialogue_evaluation(hyp_file, ref_file, fld_out):
nist, bleu, meteor, entropy, div, avg_len = nlp_metrics([ref_file], hyp_file, fld_out)
results = {
'NIST-2': nist[1],
'NIST-4': nist[3],
'BLEU-2': bleu[1],
'BLEU-4': bleu[3],
'METEOR': meteor,
'Entropy-4': entropy[3],
'Dist-1': div[0],
'Dist-2': div[1],
'avg_len': avg_len
}
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--refs_dir', default=None)
parser.add_argument('--ref_file', default=None)
parser.add_argument('--hyp_file', required=True)
parser.add_argument('--fld_out', required=True)
args = parser.parse_args()
if args.ref_file is not None:
refs_files = [args.ref_file]
else:
refs_files = list(map(str, Path(args.refs_dir).glob('ref_*.txt')))
print("references: ", refs_files)
nist, bleu, meteor, entropy, div, avg_len = nlp_metrics(refs_files, args.hyp_file, args.fld_out)
print("NIST:", nist)
print("BLEU:", bleu)
print("METEOR:", meteor)
print("Entropy:", entropy)
print("Distinct:", div)
print("avg_len:", avg_len)
if __name__ == "__main__":
main() |
Thank you so much. |
From DialoGPT paper,
The paper mentions that the results obtained are with beam width 10 and you ran the evaluation with beam width 1. Maybe trying generating responses with |
I first extract contexts from
test.refs.txt
(6000 lines)and extract multi ref files (use up to 15 per sample)
Then use the following script to predict the responses on 6k multi-ref dataset.
But there is a big gap between the evaluation results and those described in the paper.
My evaluation results
Described in paper
Here are predictions of the first 20 test samples:
The text was updated successfully, but these errors were encountered: