Skip to content

The implementation code for cosine attention is incorrect in swing-v2. #373

@KegangWangCCNU

Description

@KegangWangCCNU

To compute the L2 norm in cosine similarity, F.normalize should be used. However, the last dimension (dim=-1) is a padded dimension of size 1. Using cosine similarity on dim=-1 is incorrect, as this leads to all values becoming 1 or -1. The correct approach is to use dim=-2, to ensure the code aligns with the paper.

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)    # shape (3, B_, heads, N, 1)
        q, k, v = qkv[0], qkv[1], qkv[2] 

        q_, k_ = F.normalize(q, dim=-1).detach(), F.normalize(k, dim=-1).detach()
        print('shape', q_.shape, k_.shape)                                            # print shape
        print('value', q_.numpy().reshape(-1), k_.numpy().reshape(-1))                # print normalized values (-1 or 1)
        
        # cosine attention
        # dim=-1 is incorrect, should be corrected to dim=-2
        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))

        logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
        attn = attn * logit_scale

Image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions