Skip to content

Python: Getting started jupyter notebook "Building Semantic with Embeddings" doesn't work out of the box #12773

@gbm

Description

@gbm

Running 05-memory-and-embeddings.ipynb, when I run cell

from semantic_kernel.connectors.in_memory import InMemoryStore

in_memory_store = InMemoryStore()

collection = in_memory_store.get_collection(record_type=SimpleModel)
await collection.ensure_collection_exists()
# Add records to the collection
await collection.upsert(records)

with text-embedding-ada-002 as my AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME I get

BadRequestError: Error code: 400 - {'error': {'message': 'This model does not support specifying dimensions.', 'type': 'invalid_request_error', 'param': None, 'code': None}}

I guess this is the wrong embedding model to use.
There is no guidance over embedding model to use and I based my choice off of Tutorial: Explore Azure OpenAI in Azure AI Foundry Models embeddings and document search

Metadata

Metadata

Labels

memorypythonPull requests for the Python Semantic Kernelsamples

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions