Skip to content

Commit

Permalink
Adapt to coq/coq#18164 (#103)
Browse files Browse the repository at this point in the history
  • Loading branch information
Villetaneuse authored Dec 1, 2023
1 parent cf4acee commit 3c2a1df
Show file tree
Hide file tree
Showing 89 changed files with 688 additions and 697 deletions.
1 change: 0 additions & 1 deletion Bedrock/Word.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@ Require Export Fiat.Common.Coq__8_4__8_5__Compat.
(** Fixed precision machine words *)

Require Import Coq.Arith.Arith
Coq.Arith.Div2
Coq.NArith.NArith
Coq.Bool.Bool
Coq.ZArith.ZArith.
Expand Down
5 changes: 3 additions & 2 deletions src/ADTRefinement/FixedPoint.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
Require Export Fiat.Common.Coq__8_4__8_5__Compat.
Require Import Fiat.ADT Fiat.ADTNotation.
Require Export Fiat.Computation.FixComp.
Require Import Coq.ZArith.ZArith.
Require Import Coq.Arith.PeanoNat.

Import LeastFixedPointFun.

Expand Down Expand Up @@ -113,9 +115,8 @@ Lemma length_wf' : forall A len l,
Proof.
induction len; simpl; intros;
constructor; intros.
contradiction (NPeano.Nat.nlt_0_r _ H).
contradiction (Nat.nlt_0_r _ H).
apply IHlen.
Require Import Coq.ZArith.ZArith.
omega.
Qed.

Expand Down
4 changes: 2 additions & 2 deletions src/CertifiedExtraction/Extraction/External/Lists.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Require Export Bedrock.Platform.Facade.examples.QsADTs.
Lemma CompileEmpty_helper {A}:
forall (lst : list A) (w : W),
Programming.propToWord (lst = @nil A) w ->
ret (bool2w (EqNat.beq_nat (Datatypes.length lst) 0)) ↝ w.
ret (bool2w (Nat.eqb (Datatypes.length lst) 0)) ↝ w.
Proof.
unfold Programming.propToWord, IF_then_else in *.
destruct lst; simpl in *; destruct 1; repeat cleanup; try discriminate; fiat_t.
Expand All @@ -15,7 +15,7 @@ Hint Resolve CompileEmpty_helper : call_helpers_db.

Lemma ListEmpty_helper :
forall {A} (seq: list A),
(EqNat.beq_nat (Datatypes.length seq) 0) = match seq with
(Nat.eqb (Datatypes.length seq) 0) = match seq with
| nil => true
| _ :: _ => false
end.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ Module ADTListCompilation
GLabelMap.MapsTo fpointer (Axiomatic Empty) env ->
{{ tenv }}
Call vtest fpointer (vlst :: nil)
{{ [[`vtest ->> (bool2w (EqNat.beq_nat (Datatypes.length lst) 0)) as _]] :: (DropName vtest tenv) }} ∪ {{ ext }} // env.
{{ [[`vtest ->> (bool2w (Nat.eqb (Datatypes.length lst) 0)) as _]] :: (DropName vtest tenv) }} ∪ {{ ext }} // env.
Proof.
repeat (SameValues_Facade_t_step || facade_cleanup_call || LiftPropertyToTelescope_t || PreconditionSet_t || injections).

Expand All @@ -144,7 +144,7 @@ Module ADTListCompilation
GLabelMap.MapsTo fpointer (Axiomatic Empty) env ->
{{ tenv }}
Call vtest fpointer (vlst :: nil)
{{ [[`vtest ->> (bool2w (EqNat.beq_nat (Datatypes.length (rev lst)) 0)) as _]] :: tenv }} ∪ {{ ext }} // env.
{{ [[`vtest ->> (bool2w (Nat.eqb (Datatypes.length (rev lst)) 0)) as _]] :: tenv }} ∪ {{ ext }} // env.
Proof.
intros.
setoid_rewrite rev_length.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ Ltac _compile_length :=
match_ProgOk
ltac:(fun prog pre post ext env =>
match constr:((pre, post)) with
| (?pre, Cons ?k (ret (bool2w (EqNat.beq_nat (Datatypes.length (rev ?seq)) 0))) (fun _ => ?pre')) =>
| (?pre, Cons ?k (ret (bool2w (Nat.eqb (Datatypes.length (rev ?seq)) 0))) (fun _ => ?pre')) =>
let vlst := find_fast (wrap (FacadeWrapper := WrapInstance (H := QS_WrapFiatWTupleList)) seq) ext in
match vlst with
| Some ?vlst => eapply (WTupleListCompilation.CompileEmpty_spec (idx := 3) (vlst := vlst))
Expand Down
7 changes: 3 additions & 4 deletions src/Common.v
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
Require Import Coq.Lists.List.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Require Import Coq.ZArith.ZArith Coq.Lists.SetoidList.
Require Export Coq.Setoids.Setoid Coq.Classes.RelationClasses
Coq.Program.Program Coq.Classes.Morphisms.
Expand Down Expand Up @@ -1330,7 +1329,7 @@ Definition path_prod' {A B} {x x' : A} {y y' : B}

Lemma lt_irrefl' {n m} (H : n = m) : ~n < m.
Proof.
subst; apply Lt.lt_irrefl.
subst; apply Nat.lt_irrefl.
Qed.

Lemma or_not_l {A B} (H : A \/ B) (H' : ~A) : B.
Expand Down Expand Up @@ -1627,7 +1626,7 @@ Module opt.
Definition snd {A B} := Eval compute in @snd A B.
Definition andb := Eval compute in andb.
Definition orb := Eval compute in orb.
Definition beq_nat := Eval compute in EqNat.beq_nat.
Definition beq_nat := Eval compute in Nat.eqb.

Module Export Notations.
Delimit Scope opt_bool_scope with opt_bool.
Expand All @@ -1641,7 +1640,7 @@ Module opt2.
Definition snd {A B} := Eval compute in @snd A B.
Definition andb := Eval compute in andb.
Definition orb := Eval compute in orb.
Definition beq_nat := Eval compute in EqNat.beq_nat.
Definition beq_nat := Eval compute in Nat.eqb.
Definition leb := Eval compute in Compare_dec.leb.

Module Export Notations.
Expand Down
4 changes: 2 additions & 2 deletions src/Common/BoundedLookup.v
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ Section BoundedIndex.

Fixpoint fin_beq {m n} (p : Fin.t m) (q : Fin.t n) :=
match p, q with
| @Fin.F1 m', @Fin.F1 n' => EqNat.beq_nat m' n'
| @Fin.F1 m', @Fin.F1 n' => Nat.eqb m' n'
| Fin.FS _ _, Fin.F1 _ => false
| Fin.F1 _, Fin.FS _ _ => false
| Fin.FS _ p', Fin.FS _ q' => fin_beq p' q'
Expand All @@ -153,7 +153,7 @@ Section BoundedIndex.
Proof.
intros; pattern n, p, q; eapply Fin.rect2; simpl;
intuition; try (congruence || discriminate).
- symmetry; eapply beq_nat_refl.
- eapply Nat.eqb_refl.
- eauto using Fin.FS_inj.
Qed.

Expand Down
4 changes: 2 additions & 2 deletions src/Common/Enumerable.v
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ Section enum.

Definition enumerate_fun_beq (enumerate : list A) (f g : A -> B)
: bool
:= EqNat.beq_nat (List.length (List.filter (fun x => negb (beq (f x) (g x))) enumerate)) 0.
:= Nat.eqb (List.length (List.filter (fun x => negb (beq (f x) (g x))) enumerate)) 0.

Definition enumerate_fun_bl_in
(bl : forall x y, beq x y = true -> x = y)
Expand All @@ -29,7 +29,7 @@ Section enum.
Proof.
unfold enumerate_fun_beq.
intros H x H'.
apply EqNat.beq_nat_true in H.
apply Nat.eqb_eq in H.
apply bl.
destruct (beq (f x) (g x)) eqn:Heq; [ reflexivity | exfalso ].
apply Bool.negb_true_iff in Heq.
Expand Down
7 changes: 4 additions & 3 deletions src/Common/Equality.v
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
Require Import Coq.Lists.List Coq.Lists.SetoidList.
Require Import Coq.Bool.Bool.
Require Import Coq.Arith.PeanoNat.
Require Import Coq.Strings.Ascii.
Require Import Coq.Strings.String.
Require Import Coq.Logic.Eqdep_dec.
Expand Down Expand Up @@ -379,10 +380,10 @@ Definition internal_prod_dec_lb {A B} eq_A eq_B A_lb B_lb x y
H
(surjective_pairing _))).

Global Instance nat_BoolDecR : BoolDecR nat := EqNat.beq_nat.
Global Instance nat_BoolDec_bl : BoolDec_bl (@eq nat) := @EqNat.beq_nat_true.
Global Instance nat_BoolDecR : BoolDecR nat := Nat.eqb.
Global Instance nat_BoolDec_bl : BoolDec_bl (@eq nat) := fun n m => (proj1 (Nat.eqb_eq n m)).
Global Instance nat_BoolDec_lb : BoolDec_lb (@eq nat) :=
fun x y => proj2 (@EqNat.beq_nat_true_iff x y).
fun x y => proj2 (@Nat.eqb_eq x y).

Lemma unit_bl {x y} : unit_beq x y = true -> x = y.
Proof. apply internal_unit_dec_bl. Qed.
Expand Down
4 changes: 2 additions & 2 deletions src/Common/FixedPoints.v
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ Section fixedpoints.
| _ => omega
| [ H : forall a, _ -> _ = _ |- _ ] => rewrite H by omega
| [ H : _ < _ |- _ ] => hnf in H
| [ H : S _ <= S _ |- _ ] => apply Le.le_S_n in H
| [ H : S _ <= S _ |- _ ] => apply Nat.succ_le_mono in H
| [ H : sizeof ?x <= ?y, H' : ?y <= sizeof (step ?x) |- _ ]
=> let H'' := fresh in
assert (H'' : sizeof (step x) <= sizeof x) by apply step_monotonic;
Expand Down Expand Up @@ -95,7 +95,7 @@ Section listpair.
Lemma step_monotonic lss : sizeof_pair (step lss) <= sizeof_pair lss.
Proof.
unfold step, sizeof_pair; simpl;
apply Plus.plus_le_compat;
apply Nat.add_le_mono;
apply length_filter.
Qed.

Expand Down
12 changes: 6 additions & 6 deletions src/Common/Frame.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Require Import
SetoidClass
Coq.Arith.Max
Coq.Classes.Morphisms.
Coq.Classes.Morphisms
Coq.Arith.PeanoNat.
Require Export Fiat.Common.Coq__8_4__8_5__Compat.

Generalizable All Variables.
Expand Down Expand Up @@ -212,7 +212,7 @@ Module PreO.
Qed.

Definition Nat : t le.
Proof. constructor; [ apply Le.le_refl | apply Le.le_trans ].
Proof. constructor; [ apply Nat.le_refl | apply Nat.le_trans ].
Qed.

Definition discrete (A : Type) : t (@Logic.eq A).
Expand Down Expand Up @@ -408,7 +408,7 @@ Module PO.
constructor; intros.
- apply PreO.Nat.
- solve_proper.
- apply Le.le_antisym; assumption.
- apply Nat.le_antisymm; assumption.
Qed.

Definition discrete (A : Type) : t (@Logic.eq A) Logic.eq.
Expand Down Expand Up @@ -585,8 +585,8 @@ Module JoinLat.
Proof. constructor; intros.
- apply PO.Nat.
- solve_proper.
- constructor. simpl. apply Max.le_max_l. apply Max.le_max_r.
apply Max.max_lub.
- constructor. simpl. apply Nat.le_max_l. apply Nat.le_max_r.
apply Nat.max_lub.
Qed.

(** Max for propositions is the propositional OR, i.e., disjunction *)
Expand Down
11 changes: 5 additions & 6 deletions src/Common/Le.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
(** * Common facts about [≤] *)
Require Export Fiat.Common.Coq__8_4__8_5__Compat.
Require Import Coq.Arith.Le.
Require Import Coq.ZArith.ZArith.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.
Expand Down Expand Up @@ -46,7 +45,7 @@ Proof.
induction n; simpl; try reflexivity.
rewrite IHn; clear IHn.
edestruct le_canonical; [ exfalso | reflexivity ].
{ eapply le_Sn_n; eassumption. }
{ eapply Nat.nle_succ_diag_l; eassumption. }
Qed.

Lemma le_canonical_nS {n m pf} (H : le_canonical n m = left pf)
Expand Down Expand Up @@ -103,13 +102,13 @@ Proof. omega. Qed.
Global Instance le_lt_Proper : Proper (Basics.flip le ==> le ==> impl) lt.
Proof.
repeat intro.
eapply lt_le_trans; [ | eassumption ].
eapply le_lt_trans; eassumption.
eapply Nat.lt_le_trans; [ | eassumption ].
eapply Nat.le_lt_trans; eassumption.
Qed.

Global Instance le_lt_Proper' : Proper (le ==> Basics.flip le ==> Basics.flip impl) lt.
Proof.
repeat intro.
eapply lt_le_trans; [ | eassumption ].
eapply le_lt_trans; eassumption.
eapply Nat.lt_le_trans; [ | eassumption ].
eapply Nat.le_lt_trans; eassumption.
Qed.
2 changes: 1 addition & 1 deletion src/Common/List/FlattenList.v
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ Section FlattenList.
- auto with arith.
- unfold compose;
rewrite app_length, <- IHseq.
rewrite plus_comm, <- plus_assoc; auto with arith.
rewrite Nat.add_comm, <- Nat.add_assoc; auto with arith.
Qed.

Lemma length_flatten :
Expand Down
34 changes: 17 additions & 17 deletions src/Common/List/ListFacts.v
Original file line number Diff line number Diff line change
Expand Up @@ -351,8 +351,8 @@ Section ListFacts.
clear IHseq; revert a default; induction seq;
simpl; intros; auto with arith.
rewrite <- IHseq.
rewrite Plus.plus_comm, <- Plus.plus_assoc; f_equal.
rewrite Plus.plus_comm; reflexivity.
rewrite Nat.add_comm, <- Nat.add_assoc; f_equal.
rewrite Nat.add_comm; reflexivity.
Qed.

Lemma map_snd {A B C} :
Expand Down Expand Up @@ -433,7 +433,7 @@ Section ListFacts.
Proof.
induction seq; simpl; intros; eauto with arith.
rewrite IHseq; f_equal; eauto with arith.
repeat rewrite <- Plus.plus_assoc; f_equal; auto with arith.
repeat rewrite <- Nat.add_assoc; f_equal; auto with arith.
Qed.

Lemma length_flat_map :
Expand Down Expand Up @@ -603,7 +603,7 @@ Section ListFacts.
{ destruct y; simpl.
{ destruct x; simpl; repeat (f_equal; []); try reflexivity; omega. }
{ rewrite IHls; destruct x; simpl; repeat (f_equal; []); try reflexivity.
rewrite NPeano.Nat.add_succ_r; reflexivity. } }
rewrite Nat.add_succ_r; reflexivity. } }
Qed.

Lemma in_map_iffT' {A B}
Expand Down Expand Up @@ -639,7 +639,7 @@ Section ListFacts.
(f : A -> nat) (ls : list A) (y : nat)
: iffT (In y (map f ls)) { x : A | f x = y /\ In x ls }.
Proof.
apply in_map_iffT, NPeano.Nat.eq_dec.
apply in_map_iffT, Nat.eq_dec.
Defined.

Lemma nth_take_1_drop {A} (ls : list A) n a
Expand Down Expand Up @@ -670,7 +670,7 @@ Section ListFacts.
: drop 1 (drop y ls) = drop (S y) ls.
Proof.
rewrite drop_drop.
rewrite NPeano.Nat.add_1_r.
rewrite Nat.add_1_r.
reflexivity.
Qed.

Expand Down Expand Up @@ -967,15 +967,15 @@ Section ListFacts.
| [ H : context[option_map _ ?x] |- _ ] => destruct x eqn:?; unfold option_map in H
| _ => solve [ repeat (esplit || eassumption) ]
| [ H : context[nth_error (_::_) ?x] |- _ ] => is_var x; destruct x; simpl nth_error in H
| [ H : S _ < S _ |- _ ] => apply lt_S_n in H
| [ H : S _ < S _ |- _ ] => apply (proj2 (Nat.succ_lt_mono _ _)) in H
| _ => solve [ eauto with nocore ]
| [ |- context[if ?b then _ else _] ] => destruct b eqn:?
| [ H : ?A -> ?B |- _ ] => let H' := fresh in assert (H' : A) by (assumption || omega); specialize (H H'); clear H'
| [ H : forall n, n < S _ -> _ |- _ ] => pose proof (H 0); specialize (fun n => H (S n))
| _ => progress simpl in *
| [ H : forall x, ?f x = ?f ?y -> _ |- _ ] => specialize (H _ eq_refl)
| [ H : forall x, ?f ?y = ?f x -> _ |- _ ] => specialize (H _ eq_refl)
| [ H : forall n, S n < S _ -> _ |- _ ] => specialize (fun n pf => H n (lt_n_S _ _ pf))
| [ H : forall n, S n < S _ -> _ |- _ ] => specialize (fun n pf => H n (proj1 (Nat.succ_lt_mono _ _) pf))
| [ H : nth_error nil ?x = Some _ |- _ ] => is_var x; destruct x
| [ H : forall m x, nth_error (_::_) m = Some _ -> _ |- _ ] => pose proof (H 0); specialize (fun m => H (S m))
| [ H : or _ _ |- _ ] => destruct H
Expand Down Expand Up @@ -1106,11 +1106,11 @@ Section ListFacts.
induction ls as [|x xs IHxs].
{ simpl; intros; destruct (n - offset); reflexivity. }
{ simpl; intros.
destruct (beq_nat n offset) eqn:H';
[ apply beq_nat_true in H'
| apply beq_nat_false in H' ];
destruct (Nat.eqb n offset) eqn:H';
[ apply Nat.eqb_eq in H'
| apply Nat.eqb_neq in H' ];
subst;
rewrite ?minus_diag; trivial.
rewrite ?Nat.sub_diag; trivial.
destruct (n - offset) eqn:H''.
{ omega. }
{ rewrite IHxs by omega.
Expand Down Expand Up @@ -1997,7 +1997,7 @@ Section ListFacts.
List.In n ns -> f n <= fold_right (fun n acc => max (f n) acc) 0 ns.
Proof.
induction ns; intros; inversion H; subst; simpl;
apply NPeano.Nat.max_le_iff; [ left | right ]; auto.
apply Nat.max_le_iff; [ left | right ]; auto.
Qed.

Lemma fold_right_higher_is_higher {A}
Expand All @@ -2006,7 +2006,7 @@ Section ListFacts.
fold_right (fun n acc => max (f n) acc) 0 ns <= x.
Proof.
induction ns; simpl; intros; [ apply le_0_n | ].
apply NPeano.Nat.max_lub.
apply Nat.max_lub.
apply H; left; auto.
apply IHns; intros; apply H; right; auto.
Qed.
Expand All @@ -2023,8 +2023,8 @@ Section ListFacts.
(* if a list is empty, the result of filtering the list with anything will still be empty *)
Lemma filter_nil_is_nil {A}
: forall (l : list A) (pred : A -> bool),
beq_nat (Datatypes.length l) 0 = true
-> beq_nat (Datatypes.length (filter pred l)) 0 = true.
Nat.eqb (Datatypes.length l) 0 = true
-> Nat.eqb (Datatypes.length (filter pred l)) 0 = true.
Proof.
induction l; intros; simpl; try inversion H.
reflexivity.
Expand Down Expand Up @@ -2374,7 +2374,7 @@ Section ListFacts.
= option_map (fun v => (start + idx, v)) (nth_error ls idx).
Proof.
revert start idx; induction ls as [|l ls IHls], idx as [|idx]; try reflexivity.
{ simpl; rewrite NPeano.Nat.add_0_r; reflexivity. }
{ simpl; rewrite Nat.add_0_r; reflexivity. }
{ simpl; rewrite <- plus_n_Sm, IHls; reflexivity. }
Qed.

Expand Down
2 changes: 1 addition & 1 deletion src/Common/List/Operations.v
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ Module Export List.
Fixpoint nth'_helper {A} (n : nat) (ls : list A) (default : A) (offset : nat) :=
match ls with
| nil => default
| x::xs => if EqNat.beq_nat n offset
| x::xs => if Nat.eqb n offset
then x
else nth'_helper n xs default (S offset)
end.
Expand Down
Loading

0 comments on commit 3c2a1df

Please sign in to comment.