diff --git a/examples/timeSeries-hand-gestures/index.html b/examples/timeSeries-hand-gestures/index.html new file mode 100644 index 00000000..90d238c2 --- /dev/null +++ b/examples/timeSeries-hand-gestures/index.html @@ -0,0 +1,22 @@ +<!-- + 👋 Hello! This is an ml5.js example made and shared with ❤️. + Learn more about the ml5.js project: https://ml5js.org/ + ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + + This example demonstrates training a Sign Language classifier through ml5.TimeSeries. +--> + +<html> + <head> + <meta charset="UTF-8" /> + <meta http-equiv="X-UA-Compatible" content="IE=edge" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0" /> + <title>ml5.js Time Series Hand Gesture Train and Save</title> + <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.4/p5.min.js"></script> + <script src="../../dist/ml5.js"></script> + </head> + + <body> + <script src="sketch.js"></script> + </body> +</html> diff --git a/examples/timeSeries-hand-gestures/sketch.js b/examples/timeSeries-hand-gestures/sketch.js new file mode 100644 index 00000000..c95392ff --- /dev/null +++ b/examples/timeSeries-hand-gestures/sketch.js @@ -0,0 +1,192 @@ +/* + * 👋 Hello! This is an ml5.js example made and shared with ❤️. + * Learn more about the ml5.js project: https://ml5js.org/ + * ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + * + * This example demonstrates training a Hand Gesture classifier through ml5.TimeSeries. + */ + +let seqLength = 50; + +let handPose; +let video; + +let hands = []; +let sequence = []; + +let recordingFinished = false; +let predictedWord = ""; + +// UI variables +let trainingWords = {}; + +function preload() { + // Load the handPose model + handPose = ml5.handPose(); + + // setup the timeseries neural network + let options = { + outputs: ["label"], + task: "classification", + dataMode: "spatial", + debug: "true", + learningRate: 0.001, + }; + model = ml5.timeSeries(options); +} + +function setup() { + createCanvas(640, 480); + + // setup video capture + video = createCapture(VIDEO); + video.size(640, 480); + video.hide(); + + // place UI elements + UI(); + + // use handpose model on video + handPose.detectStart(video, gotHands); +} + +function draw() { + // draw video on frame + image(video, 0, 0, width, height); + + drawPredictedWord(); + + // if hands are found then start recording + if (hands.length > 0 && recordingFinished == false) { + if (sequence.length <= seqLength) { + // get coordinates from hands (21 points) + handpoints = drawPoints(); + sequence.push(handpoints); + + // once sequence reaches the seqLength, add sequence as just one X value + } else if (sequence.length > 0) { + // get the training word from the input box + let train_word = nameField.value(); + + // if there is a word currently in the box then add data with that label + if (train_word.length > 0) { + // add data to the model + let target = { label: train_word }; + model.addData(sequence, target); + trainingWordsUpdate(); + + // if there is no word in the box then classify instead + } else { + // classify the data + model.classify(sequence, gotResults); + } + + // reset the sequence + sequence = []; + recordingFinished = true; + } + + // can only record again when hand is out of frame + } else { + if (hands.length == 0) { + recordingFinished = false; + } + } +} + +function drawPoints() { + let handpoints = []; + // iterate through both hands + for (let i = 0; i < hands.length; i++) { + let hand = hands[i]; + for (let j = 0; j < hand.keypoints.length; j++) { + // access the keypoints in the hand + let keypoint = hand.keypoints[j]; + handpoints.push(keypoint.x, keypoint.y); + + fill(0, 255, 0); + noStroke(); + circle(keypoint.x, keypoint.y, 5); + } + } + // assign to a different variable before clearing + let output = handpoints; + handpoints = []; + + return output; +} + +// Callback function for when handPose outputs data +function gotHands(results) { + // save the output to the hands variable + hands = results; +} + +function trainModelAndSave() { + model.normalizeData(); + let options = { + epochs: 100, + }; + model.train(options, whileTraining, finishedTraining); + nameField.value(""); +} + +function whileTraining(epoch) { + console.log(epoch); +} + +function finishedTraining() { + console.log("finished training."); + model.save("model"); +} + +function gotResults(results) { + predictedWord = results[0].label; + console.log(predictedWord); + text(predictedWord, 200, 200); +} + +function UI() { + nameField = createInput(""); + nameField.attribute("placeholder", "Type the word to train"); + nameField.position(110, 500); + nameField.size(250); + + instructionP = createP( + 'I want to train: <br><br> 1.) Type any word you want to pair with a gesture, e.g. "HELLO" <br> 2.) Do the gesture associated to the word, make sure to do it until the points disappear. <br> 3.) Move your hand out of the frame and repeat the gesture, do this multiple times <br> 4.) Do the same for other words e.g. "BYE" <br> 5.) Once all data is collected, press Train and Save<br><br> Tip: have at least 5 datasets for each word' + ); + instructionP.style("width", "640px"); + dataCountsP = createP("-> After the gesture a tally will appear here <-"); + + train_but = createButton("Train and Save"); + train_but.mouseClicked(trainModelAndSave); + train_but.style("font-family", "Georgia"); + train_but.style("font-size", "20px"); + train_but.position(500, 490); +} + +function drawPredictedWord() { + textSize(100); + fill(255); + text(predictedWord, 100, height / 2); +} + +function trainingWordsUpdate() { + let tempWord = nameField.value(); + console.log(Object.keys(trainingWords)); + if (!(tempWord in trainingWords)) { + trainingWords[tempWord] = 1; + } else { + trainingWords[tempWord]++; + } + + let counts = ""; + let keys = Object.keys(trainingWords); + console.log("keys", keys); + + for (let k of keys) { + counts += k + " : " + trainingWords[k] + "<br>"; + } + + dataCountsP.html(counts); +} diff --git a/examples/timeSeries-load-model-hand-gestures/index.html b/examples/timeSeries-load-model-hand-gestures/index.html new file mode 100644 index 00000000..92363d69 --- /dev/null +++ b/examples/timeSeries-load-model-hand-gestures/index.html @@ -0,0 +1,45 @@ +<!-- + 👋 Hello! This is an ml5.js example made and shared with ❤️. + Learn more about the ml5.js project: https://ml5js.org/ + ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + + This example demonstrates loading a Sign Language classifier through ml5.TimeSeries. +--> + +<html> + <head> + <meta charset="UTF-8" /> + <meta http-equiv="X-UA-Compatible" content="IE=edge" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0" /> + <title>ml5.js Time Series Hand Gesture load model</title> + <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.4/p5.min.js"></script> + <script src="../../dist/ml5.js"></script> + </head> + + <body> + <script src="sketch.js"></script> + <div id="canvasDiv"></div> + <p> + This example loads a model that is trained with ASL hand gestures for + Hello and Goodbye. <br /> + <br /> + + Instructions: <br /> + 1.) Use one hand to do a gesture in front of the camera <br /> + 2.) Wait for the points to disappear or the prediction appears on + screen<br /> + 3.) To predict again, remove your hands in the frame and do the gesture + again<br /><br /> + + How to do gestures for Hello and Goodbye in ASL: <br /> + Hello: + <a href="https://babysignlanguage.com/dictionary/hello/" + >https://babysignlanguage.com/dictionary/hello/ </a + ><br /> + Goodbye: + <a href="https://babysignlanguage.com/dictionary/goodbye/" + >https://babysignlanguage.com/dictionary/goodbye/ </a + ><br /> + </p> + </body> +</html> diff --git a/examples/timeSeries-load-model-hand-gestures/model/model.json b/examples/timeSeries-load-model-hand-gestures/model/model.json new file mode 100644 index 00000000..ad7c44f6 --- /dev/null +++ b/examples/timeSeries-load-model-hand-gestures/model/model.json @@ -0,0 +1 @@ +{"modelTopology":{"class_name":"Sequential","config":{"name":"sequential_1","layers":[{"class_name":"Conv1D","config":{"filters":8,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"kernel_regularizer":null,"kernel_constraint":null,"kernel_size":[3],"strides":[1],"padding":"valid","dilation_rate":[1],"activation":"relu","use_bias":true,"bias_initializer":{"class_name":"Zeros","config":{}},"bias_regularizer":null,"activity_regularizer":null,"bias_constraint":null,"name":"conv1d_Conv1D1","trainable":true,"batch_input_shape":[null,51,42],"dtype":"float32"}},{"class_name":"MaxPooling1D","config":{"pool_size":[2],"padding":"valid","strides":[2],"name":"max_pooling1d_MaxPooling1D1","trainable":true}},{"class_name":"Conv1D","config":{"filters":16,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"kernel_regularizer":null,"kernel_constraint":null,"kernel_size":[3],"strides":[1],"padding":"valid","dilation_rate":[1],"activation":"relu","use_bias":true,"bias_initializer":{"class_name":"Zeros","config":{}},"bias_regularizer":null,"activity_regularizer":null,"bias_constraint":null,"name":"conv1d_Conv1D2","trainable":true,"batch_input_shape":[null,51,42],"dtype":"float32"}},{"class_name":"MaxPooling1D","config":{"pool_size":[2],"padding":"valid","strides":[2],"name":"max_pooling1d_MaxPooling1D2","trainable":true}},{"class_name":"Flatten","config":{"name":"flatten_Flatten1","trainable":true}},{"class_name":"Dense","config":{"units":16,"activation":"relu","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense1","trainable":true}},{"class_name":"Dense","config":{"units":2,"activation":"softmax","use_bias":true,"kernel_initializer":{"class_name":"VarianceScaling","config":{"scale":1,"mode":"fan_avg","distribution":"normal","seed":null}},"bias_initializer":{"class_name":"Zeros","config":{}},"kernel_regularizer":null,"bias_regularizer":null,"activity_regularizer":null,"kernel_constraint":null,"bias_constraint":null,"name":"dense_Dense2","trainable":true}}]},"keras_version":"tfjs-layers 4.8.0","backend":"tensor_flow.js"},"weightsManifest":[{"paths":["./hello.weights.bin"],"weights":[{"name":"conv1d_Conv1D1/kernel","shape":[3,42,8],"dtype":"float32"},{"name":"conv1d_Conv1D1/bias","shape":[8],"dtype":"float32"},{"name":"conv1d_Conv1D2/kernel","shape":[3,8,16],"dtype":"float32"},{"name":"conv1d_Conv1D2/bias","shape":[16],"dtype":"float32"},{"name":"dense_Dense1/kernel","shape":[176,16],"dtype":"float32"},{"name":"dense_Dense1/bias","shape":[16],"dtype":"float32"},{"name":"dense_Dense2/kernel","shape":[16,2],"dtype":"float32"},{"name":"dense_Dense2/bias","shape":[2],"dtype":"float32"}]}]} \ No newline at end of file diff --git a/examples/timeSeries-load-model-hand-gestures/model/model.weights.bin b/examples/timeSeries-load-model-hand-gestures/model/model.weights.bin new file mode 100644 index 00000000..e57f1816 Binary files /dev/null and b/examples/timeSeries-load-model-hand-gestures/model/model.weights.bin differ diff --git a/examples/timeSeries-load-model-hand-gestures/model/model_meta.json b/examples/timeSeries-load-model-hand-gestures/model/model_meta.json new file mode 100644 index 00000000..1c0165c7 --- /dev/null +++ b/examples/timeSeries-load-model-hand-gestures/model/model_meta.json @@ -0,0 +1 @@ +{"inputUnits":[42],"outputUnits":2,"inputs":{"label_0":{"dtype":"number","min":4.151249399907168,"max":586.4725394909854},"label_1":{"dtype":"number","min":186.47223882383636,"max":496.34918695509003},"label_2":{"dtype":"number","min":12.818880217505907,"max":564.7860747522525},"label_3":{"dtype":"number","min":160.9460986889124,"max":478.89482602620234},"label_4":{"dtype":"number","min":20.681431005110262,"max":557.1173870582799},"label_5":{"dtype":"number","min":135.1274696802808,"max":454.0862355189599},"label_6":{"dtype":"number","min":29.375938053231934,"max":562.4826339023859},"label_7":{"dtype":"number","min":113.22511415628927,"max":455.15365538508894},"label_8":{"dtype":"number","min":37.27265551578051,"max":573.3838980891996},"label_9":{"dtype":"number","min":98.00531862273047,"max":473.4382341601794},"label_10":{"dtype":"number","min":2.706973037101564,"max":599.2858408346702},"label_11":{"dtype":"number","min":117.7350326456234,"max":453.76022921684716},"label_12":{"dtype":"number","min":11.635752695869659,"max":612.8243751678727},"label_13":{"dtype":"number","min":91.05094143918305,"max":481.6467136241304},"label_14":{"dtype":"number","min":22.9353041163117,"max":621.0127886598051},"label_15":{"dtype":"number","min":61.619264849841635,"max":499.63536096409143},"label_16":{"dtype":"number","min":33.53953084457643,"max":626.4181148091915},"label_17":{"dtype":"number","min":28.455718477478662,"max":512.7953875856006},"label_18":{"dtype":"number","min":-2.8065139589559984,"max":617.7828981986556},"label_19":{"dtype":"number","min":117.6886729722432,"max":459.5357193516273},"label_20":{"dtype":"number","min":3.7782929928570064,"max":633.7038985044576},"label_21":{"dtype":"number","min":86.77279076496669,"max":486.0751342925063},"label_22":{"dtype":"number","min":16.177018651157255,"max":642.8366376068107},"label_23":{"dtype":"number","min":51.687144639081325,"max":502.64037741142846},"label_24":{"dtype":"number","min":28.1461509145229,"max":650.2419536370577},"label_25":{"dtype":"number","min":15.922382743702723,"max":516.9301399988833},"label_26":{"dtype":"number","min":-6.382516546058305,"max":630.7077663350849},"label_27":{"dtype":"number","min":120.16376158664924,"max":461.0881814514869},"label_28":{"dtype":"number","min":-1.4074379536407533,"max":647.5041251714117},"label_29":{"dtype":"number","min":90.58035685591811,"max":485.04491883378125},"label_30":{"dtype":"number","min":10.174906800459325,"max":658.4893875478738},"label_31":{"dtype":"number","min":71.76407331703523,"max":500.55112323964187},"label_32":{"dtype":"number","min":21.11718120932074,"max":668.566957655395},"label_33":{"dtype":"number","min":39.557348432978586,"max":514.4287318106208},"label_34":{"dtype":"number","min":-7.9534800405596595,"max":641.3232619371444},"label_35":{"dtype":"number","min":126.31599791044414,"max":465.6320514399833},"label_36":{"dtype":"number","min":-3.8369034650104927,"max":658.2044139172733},"label_37":{"dtype":"number","min":103.73604938021917,"max":481.03793223993495},"label_38":{"dtype":"number","min":3.7075645592075435,"max":668.8017566330357},"label_39":{"dtype":"number","min":88.76136006394765,"max":494.63688258092407},"label_40":{"dtype":"number","min":6.9609311353376135,"max":676.9525074586147},"label_41":{"dtype":"number","min":75.97401514052241,"max":506.7948506427954}},"outputs":{"label":{"dtype":"string","min":0,"max":1,"uniqueValues":["hello","bye"],"legend":{"hello":[1,0],"bye":[0,1]}}},"isNormalized":true,"seriesShape":[51,42]} \ No newline at end of file diff --git a/examples/timeSeries-load-model-hand-gestures/sketch.js b/examples/timeSeries-load-model-hand-gestures/sketch.js new file mode 100644 index 00000000..e8e45085 --- /dev/null +++ b/examples/timeSeries-load-model-hand-gestures/sketch.js @@ -0,0 +1,132 @@ +/* + * 👋 Hello! This is an ml5.js example made and shared with ❤️. + * Learn more about the ml5.js project: https://ml5js.org/ + * ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + * + * This example demonstrates loading a Hand Gesture classifier through ml5.TimeSeries. + * This example is trained with the ASL gestures for Hello and Goodbye + * + * Reference to sign hello and goodbye in ASL: + * Hello: https://babysignlanguage.com/dictionary/hello/ + * Goodbye: https://babysignlanguage.com/dictionary/goodbye/ + */ + +// change this to make the recording longer +let seqLength = 50; + +let handPose; +let video; +let hands = []; +let sequence = []; +let recordingFinished = false; +let predictedWord = ""; + +function preload() { + // Load the handPose model + handPose = ml5.handPose(); + + // setup the timeseries neural network + let options = { + task: "classification", + dataMode: "spatial", + spatialData: "true", + }; + + model = ml5.timeSeries(options); +} + +function setup() { + let canvas = createCanvas(640, 480); + canvas.parent("canvasDiv"); + + // create video capture + video = createCapture(VIDEO); + video.size(640, 480); + video.hide(); + + handPose.detectStart(video, gotHands); + + // setup the model files to load + let modelDetails = { + model: "model/model.json", + metadata: "model/model_meta.json", + weights: "model/model.weights.bin", + }; + + // load the model and call modelLoaded once finished + model.load(modelDetails, modelLoaded); +} +// call back for load model +function modelLoaded() { + console.log("model loaded!"); +} + +function draw() { + // draw video on the canvas + image(video, 0, 0, width, height); + + // put the text on screen after a prediction + placePredictedText(); + + // if hands are found then start recording + if (hands.length > 0 && recordingFinished == false) { + if (sequence.length <= seqLength) { + // get coordinates from hands (21 points) + handpoints = drawPoints(); + sequence.push(handpoints); + + // once sequence reaches the seqLength, add sequence as just one X value + } else if (sequence.length > 0) { + // classify based on the collected data + model.classify(sequence, gotResults); + + // reset the sequence + sequence = []; + recordingFinished = true; + } + + // can only record again when hand is out of frame + } else { + if (hands.length == 0) { + recordingFinished = false; + } + } +} + +// draw the points on the hands +function drawPoints() { + let handpoints = []; + for (let i = 0; i < hands.length; i++) { + let hand = hands[i]; + for (let j = 0; j < hand.keypoints.length; j++) { + let keypoint = hand.keypoints[j]; + fill(0, 255, 0); + noStroke(); + circle(keypoint.x, keypoint.y, 5); + handpoints.push(keypoint.x, keypoint.y); + } + } + let output = handpoints; + handpoints = []; + return output; +} + +// Callback function for when handPose outputs data +function gotHands(results) { + // save the output to the hands variable + hands = results; +} + +// call back for accessing the results +function gotResults(results) { + predictedWord = results[0].label; + console.log(predictedWord); + text(predictedWord, 100, 100); +} + +// for drawing text on screen +function placePredictedText() { + textSize(100); + fill(255); + text(predictedWord, 100, height / 2); +} diff --git a/examples/timeSeries-train-mouse-gesture RDP/index.html b/examples/timeSeries-train-mouse-gesture RDP/index.html new file mode 100644 index 00000000..6407c4eb --- /dev/null +++ b/examples/timeSeries-train-mouse-gesture RDP/index.html @@ -0,0 +1,37 @@ +<!-- + 👋 Hello! This is an ml5.js example made and shared with ❤️. + Learn more about the ml5.js project: https://ml5js.org/ + ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + + This example demonstrates How to train your own quickdraw classifier through ml5.TimeSeries. +--> + +<html> + <head> + <meta charset="UTF-8" /> + <meta http-equiv="X-UA-Compatible" content="IE=edge" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0" /> + <title>ml5.js Time Series Train Mouse Gesture classifier Example</title> + <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.4/p5.min.js"></script> + <script src="../../dist/ml5.js"></script> + </head> + + <body> + <div id="canvasDiv"> + <script src="sketch.js"></script> + </div> + + <div> + <button id="recCircle">Record Circle</button> + <button id="recSquare">Record Square</button> + <button id="trainBut">Train & Predict</button> + </div> + </body> + + <style> + button { + font-family: Georgia, "Times New Roman", Times, serif; + font-size: 20px; + } + </style> +</html> diff --git a/examples/timeSeries-train-mouse-gesture RDP/sketch.js b/examples/timeSeries-train-mouse-gesture RDP/sketch.js new file mode 100644 index 00000000..31b54d27 --- /dev/null +++ b/examples/timeSeries-train-mouse-gesture RDP/sketch.js @@ -0,0 +1,140 @@ +/* + * 👋 Hello! This is an ml5.js example made and shared with ❤️. + * Learn more about the ml5.js project: https://ml5js.org/ + * ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + * + * This example demonstrates How to train your own mouse gesture classifier through ml5.TimeSeries. + */ + +let model; + +let currShape = "circle"; +let state = "collection"; + +let datapoints; +let sequence = []; +let targetSequence = 30; +let recCircle, recSquare, trainBut; + +function preload() { + let options = { + inputs: ["x", "y"], + outputs: ["label"], + task: "classification", + dataMode: "spatial", + debug: "true", + learningRate: 0.005, + }; + + model = ml5.timeSeries(options); +} + +function setup() { + // p5 js elements + let canvas = createCanvas(600, 400); + canvas.parent("canvasDiv"); + background(220); + UI(); +} + +function draw() { + // record data when the mouse is pressed inside the canvas + if (mouseIsPressed && mouseY < height && mouseX < width) { + // draw lines through coordinates + line(pmouseX, pmouseY, mouseX, mouseY); + let inputs = { x: mouseX, y: mouseY }; + sequence.push(inputs); + } +} + +// code to signify drawing can be done again +function mouseReleased() { + if (mouseY < height && mouseX < width) { + // if state is collection, add whole sequence as X, and shape as Y + if (state == "collection") { + let target = { label: currShape }; + let paddedCoordinates = model.padCoordinates(sequence, targetSequence); + model.addData(paddedCoordinates, target); + clearScreen(); + } else if (state == "prediction") { + let paddedCoordinates = model.padCoordinates(sequence, targetSequence); + model.classify(paddedCoordinates, gotResults); + clearScreen(); + } + } + // reset the sequence + sequence = []; +} + +// cleanup screen and removed drawn elements, add helpful text +function clearScreen() { + background(220); + textSize(20); + fill(0); + text(state + " : " + currShape, 50, 50); +} + +function trainModel() { + // normalize Data first before Training + model.normalizeData(); + + // set the number of epochs for training + let options = { + epochs: 40, + }; + model.train(options, whileTraining, finishedTraining); + + background(220); + state = "training"; + text("Training...", 50, 50); + + recCircle.attribute("disabled", true); + recSquare.attribute("disabled", true); + trainBut.attribute("disabled", true); +} + +function whileTraining(epoch, loss) { + console.log(epoch); +} + +function finishedTraining() { + background(220); + text("Training Finished, Draw again to predict", 50, 50); + state = "prediction"; +} + +function gotResults(results) { + // console.log("results", results); + let label = results[0].label; + + currShape = label; +} + +////////////// UI Elements //////////// +function UI() { + textSize(20); + + recCircle = select("#recCircle"); + recSquare = select("#recSquare"); + trainBut = select("#trainBut"); + + recCircle.mouseClicked(recordCircle); + recSquare.mouseClicked(recordSquare); + trainBut.mouseClicked(trainModel); + + function recordCircle() { + state = "collection"; + currShape = "circle"; + + background(220); + text(state + " : " + currShape, 50, 50); + } + + function recordSquare() { + state = "collection"; + currShape = "square"; + + background(220); + text(state + " : " + currShape, 50, 50); + } +} diff --git a/examples/timeSeries-train-mouse-gesture/index.html b/examples/timeSeries-train-mouse-gesture/index.html new file mode 100644 index 00000000..acdfde38 --- /dev/null +++ b/examples/timeSeries-train-mouse-gesture/index.html @@ -0,0 +1,43 @@ +<!-- + 👋 Hello! This is an ml5.js example made and shared with ❤️. + Learn more about the ml5.js project: https://ml5js.org/ + ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + + This example demonstrates How to train your own quickdraw classifier through ml5.TimeSeries. +--> + +<html> + <head> + <meta charset="UTF-8" /> + <meta http-equiv="X-UA-Compatible" content="IE=edge" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0" /> + <title>ml5.js Time Series Train Mouse Gesture classifier Example</title> + <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.4/p5.min.js"></script> + <script src="../../dist/ml5.js"></script> + </head> + + <body> + <script src="sketch.js"></script> + <div id="canvasDiv"></div> + <button id="recCircle">Record Circle</button> + <button id="recSquare">Record Square</button> + <button id="trainBut">Train & Predict</button> + + <p> + Instructions: <br /> + 1.) Press the "Record Circle" or "Record Square" and start drawing until + the ink runs out <br /> + 2.) Draw multiple times for each shape<br />2.) Press "Train" and wait for + training to finish <br /> + 3.) Draw again to predict drawn shape <br /><br /> + Tip: Collect at least 5 drawings for each: + </p> + </body> + + <style> + button { + font-family: Georgia, "Times New Roman", Times, serif; + font-size: 20px; + } + </style> +</html> diff --git a/examples/timeSeries-train-mouse-gesture/sketch.js b/examples/timeSeries-train-mouse-gesture/sketch.js new file mode 100644 index 00000000..c0139c65 --- /dev/null +++ b/examples/timeSeries-train-mouse-gesture/sketch.js @@ -0,0 +1,204 @@ +/* + * 👋 Hello! This is an ml5.js example made and shared with ❤️. + * Learn more about the ml5.js project: https://ml5js.org/ + * ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + * + * This example demonstrates How to train your own mouse gesture classifier through ml5.TimeSeries. + */ + +let model; +let counts = { + circleDataCount: 0, + squareDataCount: 0, +}; +let currShape = "circle"; +let state = "collection"; + +let pressedOnce = true; +let frameCount = 0; +let datapoints; +let sequence = []; +let recCircle, recSquare, trainBut; + +// Training Data lenghts +let ink_multiplier = 3; +let num_seq = 20; + +function preload() { + let options = { + inputs: ["x", "y"], + outputs: ["label"], + task: "classification", + spatialData: "true", + debug: "true", + learningRate: 0.005, + }; + + model = ml5.timeSeries(options); +} + +function setup() { + // p5 js elements + let canvas = createCanvas(600, 400); + canvas.parent("canvasDiv"); + background(220); + UI(); + + // set framerate to constant rate for constant data collection + frameRate(60); +} + +function draw() { + // record data when the mouse is pressed inside the canvas + if (mouseIsPressed && pressedOnce && mouseY < 400 && mouseX < 600) { + // draw lines through coordinates + line(pmouseX, pmouseY, mouseX, mouseY); + + frameCount++; + + let inputs = { x: mouseX, y: mouseY }; + + sequence.push(inputs); + + if (sequence.length == num_seq * ink_multiplier) { + pressedOnce = false; + frameCount = 0; + + // if state is collection, add whole sequence as X, and shape as Y + if (state == "collection") { + let target = { label: currShape }; + model.addData(sequence, target); + + // add to the count for each + counts[currShape + "DataCount"] += 1; + console.log(counts); + updateDataCountUI(); + + // reset the screen + background(220); + textSize(20); + fill(0); + text("Recording: " + currShape, 50, 50); + // if prediction, classify using the whole sequence + } else if (state == "prediction") { + model.classify(sequence, gotResults); + + background(220); + } + + // reset the sequence + sequence = []; + } + } + inkBar(); +} + +function trainModel() { + // normalize Data first before Training + model.normalizeData(); + + // set the number of epochs for training + let options = { + epochs: 40, + }; + model.train(options, whileTraining, finishedTraining); + + background(220); + state = "training"; + text("Training...", 50, 50); + recCircle.style("background-color", ""); + recSquare.style("background-color", ""); + trainBut.style("background-color", "#f0f0f0"); +} + +function whileTraining(epoch, loss) { + console.log(epoch); +} + +function finishedTraining() { + background(220); + text("Training Finished, Draw again to predict", 50, 50); + state = "prediction"; +} + +function gotResults(results) { + let label = results[0].label; + + fill(0); + text("Prediction: " + label, 50, 50); +} + +// code to signify drawing can be done again +function mouseReleased() { + pressedOnce = true; +} + +////////////// UI Elements //////////// + +// code to visualize how much ink left +function inkBar() { + datapoints = map(frameCount, 0, ink_multiplier * num_seq, 0, num_seq); + + bar_height = 250; + height_miltiplier = bar_height / num_seq; + push(); + fill(0); + textSize(15); + text("Ink:", 550, 90); + rect(550, 100, 25, num_seq * height_miltiplier); + fill(255); + rect(550, 100, 25, datapoints * height_miltiplier); + pop(); +} + +// code for UI elements such as buttons +function UI() { + textSize(20); + + recCircle = select("#recCircle"); + recSquare = select("#recSquare"); + trainBut = select("#trainBut"); + + recCircle.mouseClicked(recordCircle); + recCircle.style("background-color", "#f0f0f0"); + recSquare.mouseClicked(recordSquare); + trainBut.mouseClicked(trainModel); + + function recordCircle() { + state = "collection"; + currShape = "circle"; + + background(220); + text("Recording: circle", 50, 50); + recCircle.style("background-color", "#f0f0f0"); + recSquare.style("background-color", ""); + trainBut.style("background-color", ""); + } + + function recordSquare() { + state = "collection"; + currShape = "square"; + + background(220); + text("Recording: square", 50, 50); + recCircle.style("background-color", ""); + recSquare.style("background-color", "#f0f0f0"); + trainBut.style("background-color", ""); + } + dataCountsP = createP( + "circle data: " + + counts.circleDataCount + + "<br>square data: " + + counts.squareDataCount + ); +} + +// Update the HTML UI with the current data counts +function updateDataCountUI() { + dataCountsP.html( + "circle data: " + + counts.circleDataCount + + "<br>square data: " + + counts.squareDataCount + ); +} diff --git a/examples/timeSeries-weather-prediction/index.html b/examples/timeSeries-weather-prediction/index.html new file mode 100644 index 00000000..72a3ffdd --- /dev/null +++ b/examples/timeSeries-weather-prediction/index.html @@ -0,0 +1,34 @@ +<!-- + 👋 Hello! This is an ml5.js example made and shared with ❤️. + Learn more about the ml5.js project: https://ml5js.org/ + ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + + This example demonstrates Training a Stock Price Predictor through ml5.TimeSeries. +--> + +<html> + <head> + <meta charset="UTF-8" /> + <meta http-equiv="X-UA-Compatible" content="IE=edge" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0" /> + <title>ml5.js Time Series Weather Prediction Example</title> + <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.4/p5.min.js"></script> + <script src="../../dist/ml5.js"></script> + </head> + + <body> + <script src="sketch.js"></script> + + <div style="position: absolute; margin: 350px 0px 0px 100px"> + <button id="train_but">Train Model</button> + <button id="pred_but">Predict Next Hour</button> + </div> + </body> + + <style> + button { + font-family: Georgia, "Times New Roman", Times, serif; + font-size: 20px; + } + </style> +</html> diff --git a/examples/timeSeries-weather-prediction/sketch.js b/examples/timeSeries-weather-prediction/sketch.js new file mode 100644 index 00000000..a21e8754 --- /dev/null +++ b/examples/timeSeries-weather-prediction/sketch.js @@ -0,0 +1,183 @@ +/* + * 👋 Hello! This is an ml5.js example made and shared with ❤️. + * Learn more about the ml5.js project: https://ml5js.org/ + * ml5.js license and Code of Conduct: https://github.com/ml5js/ml5-next-gen/blob/main/LICENSE.md + * + * This example demonstrates Training a Stock Price Predictor through ml5.TimeSeries. + */ + +let model; +let data; +let data_index; + +let seq = []; +let targetLength = 5; + +// load JSON data with same formatting from the internet, this means +// loadData() cannot yet be used as it is formatted differently +function preload() { + json_data = loadJSON("weather_data.json"); + + // set the options to initialize timeSeries Neural Network + let options = { + task: "regression", + dataMode: "linear", + debug: "true", + learningRate: 0.01, + output: ["label"], + }; + model = ml5.timeSeries(options); +} + +function setup() { + data = json_data.data; + createCanvas(640, 400); + background(220); + + // iterate through data using simple sliding window algorithm + data_index = targetLength - 1; + while (data_index < data.length - 1) { + // get the values [targetLength] steps before current index, collect and add + for (let x = targetLength - 1; x >= 0; x--) { + let curr = data[data_index - x]; + // choose from the raw data what you want to to feed to the model + let inputs = { + temperature: curr.temperature, + humidity: curr.humidity, + windSpeed: curr.wind_speed, + pressure: curr.pressure, + precipitation: curr.precipitation, + }; + + // once collected all data into an array to make it into a sequence + // the format of the sequence is like this [{},{},...,{}] + // this is the X value + seq.push(inputs); + } + + // the Y value to train is the value that comes after the sequence + let target = data[data_index + 1]; + + // select the outputs you want to get, multiple outputs are possible, we want to predict all values + let output = { + temperature: target.temperature, + humidity: target.humidity, + windSpeed: target.wind_speed, + pressure: target.pressure, + precipitation: target.precipitation, + }; + + // feed data into the model + model.addData(seq, output); + + // reset the sequence so new values can be added + seq = []; + + // iterate through the whole dataset moving the sliding window in each iteration + data_index++; + } + // normalize the data after adding everything + model.normalizeData(); + + // put a button to train and predict + trainAndPredictButtons(); +} + +// train data +function trainData() { + model.normalizeData(); + let options = { + epochs: 100, + }; + model.train(options, finishedTraining); +} + +function finishedTraining() { + console.log("Training Done!"); +} + +// predict data +function predictData() { + // set the seq to empty + seq = []; + + // choose the most recent sequences + let latest = data.slice(-targetLength); + for (let x = 0; x < targetLength; x++) { + let curr = latest[x]; + // select the same properties for inputs + let inputs = { + temperature: curr.temperature, + humidity: curr.humidity, + windSpeed: curr.wind_speed, + pressure: curr.pressure, + precipitation: curr.precipitation, + }; + // add them to one array to make them a sequence + seq.push(inputs); + } + + // use the sequence to predict + model.predict(seq, gotResults); +} + +// put the new data in the dataset so this will be considered for any new predictions +function gotResults(results) { + console.log(results); + addNewData(results); //optional but will be helpful in using new prediction as part of dataset +} + +// code for adding new data to the dataset to be used for future prediction +function addNewData(results) { + (new_values = { + date: " for the next hour", + temperature: parseFloat(results[0].value.toFixed(2)), // get string convert to float and round to 2 decimal points + humidity: parseFloat(results[1].value.toFixed(2)), + wind_speed: parseFloat(results[2].value.toFixed(2)), + pressure: parseFloat(results[3].value.toFixed(2)), + precipitation: parseFloat(results[4].value.toFixed(2)), + }), + data.push(new_values); +} + +function draw() { + background(220); + textAlign(CENTER, CENTER); + textSize(16); + + // Draw the table headers + let headers = [ + "Date", + "Temperature", + "Humidity", + "Wind Speed", + "Pressure", + "Precipitation", + ]; + let xOffset = 70; + let yOffset = 100; + for (let i = 0; i < headers.length; i++) { + text(headers[i], xOffset + i * 100, yOffset); + } + + // Display the last 5 entries from the dataset + let latest = data.slice(-targetLength); + for (let i = 0; i < latest.length; i++) { + let entry = latest[i]; + text(entry.date.slice(5), xOffset, yOffset + (i + 1) * 30); + text(entry.temperature, xOffset + 100, yOffset + (i + 1) * 30); + text(entry.humidity, xOffset + 200, yOffset + (i + 1) * 30); + text(entry.wind_speed, xOffset + 300, yOffset + (i + 1) * 30); + text(entry.pressure, xOffset + 400, yOffset + (i + 1) * 30); + text(entry.precipitation, xOffset + 500, yOffset + (i + 1) * 30); + } +} + +// get buttons and assign functions (UI) +function trainAndPredictButtons() { + train_but = select("#train_but"); + train_but.mouseClicked(trainData); + + pred_but = select("#pred_but"); + pred_but.mouseClicked(predictData); +} diff --git a/examples/timeSeries-weather-prediction/weather_data.json b/examples/timeSeries-weather-prediction/weather_data.json new file mode 100644 index 00000000..a45429a3 --- /dev/null +++ b/examples/timeSeries-weather-prediction/weather_data.json @@ -0,0 +1,196 @@ +{ + "data": [ + { + "date": "2024-08-01T00:00:00Z", + "temperature": 28.0, + "humidity": 50, + "wind_speed": 3.0, + "pressure": 1015, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T01:00:00Z", + "temperature": 27.5, + "humidity": 52, + "wind_speed": 4.0, + "pressure": 1014, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T02:00:00Z", + "temperature": 27.0, + "humidity": 55, + "wind_speed": 5.0, + "pressure": 1013, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T03:00:00Z", + "temperature": 26.5, + "humidity": 60, + "wind_speed": 6.0, + "pressure": 1012, + "precipitation": 2.0 + }, + { + "date": "2024-08-01T04:00:00Z", + "temperature": 26.0, + "humidity": 65, + "wind_speed": 8.0, + "pressure": 1010, + "precipitation": 5.0 + }, + { + "date": "2024-08-01T05:00:00Z", + "temperature": 25.5, + "humidity": 70, + "wind_speed": 10.0, + "pressure": 1008, + "precipitation": 10.0 + }, + { + "date": "2024-08-01T06:00:00Z", + "temperature": 25.0, + "humidity": 75, + "wind_speed": 12.0, + "pressure": 1006, + "precipitation": 15.0 + }, + { + "date": "2024-08-01T07:00:00Z", + "temperature": 24.5, + "humidity": 80, + "wind_speed": 14.0, + "pressure": 1004, + "precipitation": 20.0 + }, + { + "date": "2024-08-01T08:00:00Z", + "temperature": 24.0, + "humidity": 85, + "wind_speed": 15.0, + "pressure": 1002, + "precipitation": 25.0 + }, + { + "date": "2024-08-01T09:00:00Z", + "temperature": 23.5, + "humidity": 90, + "wind_speed": 17.0, + "pressure": 1000, + "precipitation": 30.0 + }, + { + "date": "2024-08-01T10:00:00Z", + "temperature": 23.0, + "humidity": 95, + "wind_speed": 20.0, + "pressure": 998, + "precipitation": 35.0 + }, + { + "date": "2024-08-01T11:00:00Z", + "temperature": 24.0, + "humidity": 85, + "wind_speed": 10.0, + "pressure": 1005, + "precipitation": 10.0 + }, + { + "date": "2024-08-01T12:00:00Z", + "temperature": 25.0, + "humidity": 75, + "wind_speed": 7.0, + "pressure": 1010, + "precipitation": 5.0 + }, + { + "date": "2024-08-01T13:00:00Z", + "temperature": 26.0, + "humidity": 65, + "wind_speed": 5.0, + "pressure": 1013, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T14:00:00Z", + "temperature": 27.0, + "humidity": 60, + "wind_speed": 4.0, + "pressure": 1015, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T15:00:00Z", + "temperature": 28.0, + "humidity": 50, + "wind_speed": 3.0, + "pressure": 1018, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T16:00:00Z", + "temperature": 27.0, + "humidity": 55, + "wind_speed": 4.0, + "pressure": 1015, + "precipitation": 0.0 + }, + { + "date": "2024-08-01T17:00:00Z", + "temperature": 26.0, + "humidity": 60, + "wind_speed": 5.0, + "pressure": 1012, + "precipitation": 1.0 + }, + { + "date": "2024-08-01T18:00:00Z", + "temperature": 25.0, + "humidity": 70, + "wind_speed": 7.0, + "pressure": 1009, + "precipitation": 5.0 + }, + { + "date": "2024-08-01T19:00:00Z", + "temperature": 24.0, + "humidity": 80, + "wind_speed": 10.0, + "pressure": 1005, + "precipitation": 10.0 + }, + { + "date": "2024-08-01T20:00:00Z", + "temperature": 23.0, + "humidity": 90, + "wind_speed": 12.0, + "pressure": 1002, + "precipitation": 15.0 + }, + { + "date": "2024-08-01T21:00:00Z", + "temperature": 22.0, + "humidity": 95, + "wind_speed": 15.0, + "pressure": 999, + "precipitation": 20.0 + }, + { + "date": "2024-08-01T22:00:00Z", + "temperature": 21.0, + "humidity": 98, + "wind_speed": 18.0, + "pressure": 995, + "precipitation": 25.0 + }, + { + "date": "2024-08-01T23:00:00Z", + "temperature": 20.0, + "humidity": 100, + "wind_speed": 20.0, + "pressure": 992, + "precipitation": 30.0 + } + ] +} diff --git a/package.json b/package.json index 63b88db7..cd90354e 100644 --- a/package.json +++ b/package.json @@ -1,6 +1,6 @@ { "name": "ml5", - "version": "1.0.1", + "version": "1.0.2", "description": "A friendly machine learning library for the web.", "main": "dist/ml5.min.js", "scripts": { @@ -11,7 +11,8 @@ "postinstall": "patch-package", "test": "jest --config tests/jest.config.js", "upload-examples": "node scripts/uploadExamples.js", - "update-p5-version": "node scripts/updateP5Version.js" + "update-p5-version": "node scripts/updateP5Version.js", + "update-readme": "node scripts/updateReadme.js" }, "files": [ "dist" @@ -71,5 +72,11 @@ "@babel/preset-env" ] }, - "prettier": {} + "prettier": {}, + "packageManager": "yarn@4.3.1", + "engines": { + "node": "^20.15.1", + "yarn": "^4.3.1", + "npm": "please-use-yarn" + } } diff --git a/src/TimeSeries/index.js b/src/TimeSeries/index.js new file mode 100644 index 00000000..62af28fe --- /dev/null +++ b/src/TimeSeries/index.js @@ -0,0 +1,733 @@ +import * as tf from "@tensorflow/tfjs"; +import callCallback from "../utils/callcallback"; +import handleArguments from "../utils/handleArguments"; +import NeuralNetwork from "./timeSeries"; +import NeuralNetworkData from "./timeSeriesData"; +import nnUtils from "../NeuralNetwork/NeuralNetworkUtils"; +import NeuralNetworkVis from "../NeuralNetwork/NeuralNetworkVis"; + +import setBackend from "../utils/setBackend"; + +import tsUtils from "./timeSeriesUtils"; + +const DEFAULTS = { + inputs: [], + outputs: [], + dataUrl: null, + modelUrl: null, + layers: [], + task: null, + dataMode: "linear", + debug: false, + learningRate: 0.2, + hiddenUnits: 16, +}; + +class timeSeries { + constructor(options, callback) { + this.options = + { + ...DEFAULTS, + ...options, + } || DEFAULTS; + + this.neuralNetwork = new NeuralNetwork(); + this.neuralNetworkData = new NeuralNetworkData(); + this.neuralNetworkVis = new NeuralNetworkVis(); + + this.data = { + training: [], + }; + + this.init = this.init.bind(this); + + this.ready = callCallback(this.init(), callback); + } + + async init() { + // workaround for Error + setBackend("webgl"); + + await tf.ready(); + if (this.options.dataUrl) { + await this.loadDataFromUrl(this.options.dataUrl); + } else if (this.options.modelUrl) { + await this.load(this.options.modelUrl); + } + return this; + } + /** + * //////////////////////////////////////////////////////////// + * Add and Format Data + * //////////////////////////////////////////////////////////// + */ + + /* adding data: can only accept the following formats: + - for xInputs: + 1. Sequence of objects (array of objects) + [{x: , y: },{x: , y: },{x: , y: },{x: , y: }] + 2. Sequence of arrays (array of array, order matters) + [[],[],[],[]] + 3. Sequence of values (inputlabels should be provided by user) + [[,,,,,]] e.g. shape = {inputLabels: ['x','y']} will become [{x: , y: },{x: , y: },{x: , y: },{x: , y: }] + + - for yInputs: + 1. similar to neural network, so use same logic + + - at the end of the adding data, the data is formatted to a sequence of objects similar to 1 of xinputs + + - changed data Modality into spatialData so its a boolean, true if coordinate data and false if normal lstm + */ + + addData(xInputs, yInputs, options = null) { + // 1. verify format between the three possible types of xinputs + const xs = tsUtils.verifyAndFormatInputs(xInputs, options, this.options); + + // 2. format the yInput - same logic as NN class + const ys = tsUtils.verifyAndFormatOutputs(yInputs, options, this.options); + + // 3. add data to raw + this.neuralNetworkData.addData(xs, ys); + } + + /** + * //////////////////////////////////////////////////////////// + * Train Data + * //////////////////////////////////////////////////////////// + */ + + async train(optionsOrCallback, optionsOrWhileTraining, callback) { + let options = {}; + let whileTrainingCb = null; + let finishedTrainingCb; + + if (typeof optionsOrCallback === "object") { + options = optionsOrCallback; + if (typeof optionsOrWhileTraining === "function") { + whileTrainingCb = null; + finishedTrainingCb = callback || optionsOrWhileTraining; + } else { + finishedTrainingCb = optionsOrWhileTraining; + } + } else if (typeof optionsOrCallback === "function") { + whileTrainingCb = optionsOrCallback; + finishedTrainingCb = optionsOrWhileTraining; + } else { + finishedTrainingCb = optionsOrCallback; + } + + return callCallback( + this.trainInternal(options, whileTrainingCb), + finishedTrainingCb + ); + } + + async trainInternal(_options, whileTrainingCb) { + const options = { + epochs: 10, + batchSize: 32, + validationSplit: 0.1, + whileTraining: null, + ..._options, + }; + + // if debug mode is true, then use tf vis + if (this.options.debug === true || this.options.debug === "true") { + options.whileTraining = [ + this.neuralNetworkVis.trainingVis(), + { + onEpochEnd: whileTrainingCb, + }, + ]; + } else { + // if not use the default training + // options.whileTraining = whileTrainingCb === null ? [{ + // onEpochEnd: (epoch, loss) => { + // console.log(epoch, loss.loss) + // } + // }] : + // [{ + // onEpochEnd: whileTrainingCb + // }]; + options.whileTraining = [ + { + onEpochEnd: whileTrainingCb, + }, + ]; + } + + // if metadata needs to be generated about the data + if (!this.neuralNetworkData.isMetadataReady) { + // if the inputs are defined as an array of [img_width, img_height, channels] + this.createMetaData(); + } + + // if the data still need to be summarized, onehotencoded, etc + if (!this.neuralNetworkData.isWarmedUp) { + this.prepareForTraining(); + } + + // if inputs and outputs are not specified + // in the options, then create the tensors + // from the this.neuralNetworkData.data.raws + if (!options.inputs && !options.outputs) { + const { inputs, outputs } = this.convertTrainingDataToTensors(); + options.inputs = inputs; + options.outputs = outputs; + } + + // check to see if layers are passed into the constructor + // then use those to create your architecture + if (!this.neuralNetwork.isLayered) { + // TODO: don't update this.options.layers - Linda + this.options.layers = this.createNetworkLayers(this.options.layers); + } + + // if the model does not have any layers defined yet + // then use the default structure + if (!this.neuralNetwork.isLayered) { + // TODO: don't update this.options.layers - Linda + this.options.layers = this.addDefaultLayers(); + } + + if (!this.neuralNetwork.isCompiled) { + // compile the model with defaults + this.compile(); + } + + // train once the model is compiled + await this.neuralNetwork.train(options); + } + + createMetaData() { + // this method does not get shape for images but instead for timesteps + const { inputs } = this.options; + + let inputShape; + if (typeof inputs === "number") { + inputShape = inputs; + } else if (Array.isArray(inputs) && inputs.length > 0) { + inputShape = inputs.length; //will be fed into the tensors later + } + + this.neuralNetworkData.createMetadata(inputShape); + } + + prepareForTraining() { + // this.data.training = this.neuralNetworkData.applyOneHotEncodingsToDataRaw(); + this.neuralNetworkData.isWarmedUp = true; + } + + convertTrainingDataToTensors() { + return this.neuralNetworkData.convertRawToTensors(this.data.training); + } + + createNetworkLayers(layerJsonArray) { + const layers = [...layerJsonArray]; + + const { inputUnits, outputUnits } = this.neuralNetworkData.meta; + const layersLength = layers.length; + + if (!(layers.length >= 2)) { + return false; + } + + // set the inputShape + layers[0].inputShape = layers[0].inputShape + ? layers[0].inputShape + : inputUnits; + // set the output units + const lastIndex = layersLength - 1; + const lastLayer = layers[lastIndex]; + lastLayer.units = lastLayer.units ? lastLayer.units : outputUnits; + + layers.forEach((layer) => { + this.addLayer(tf.layers[layer.type](layer)); + }); + + return layers; + } + + addDefaultLayers() { + let layers; + const task = this.options.task; + const dataMode = this.options.dataMode; + let taskConditions = `${task}_${dataMode}`; + switch (taskConditions.toLowerCase()) { + // if the task is classification and spatial modality + case "classification_spatial": + layers = [ + { + type: "conv1d", + filters: 8, + kernelSize: 3, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + }, + { + type: "maxPooling1d", + poolSize: 2, + }, + { + type: "conv1d", + filters: 16, + kernelSize: 3, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + }, + { + type: "maxPooling1d", + poolSize: 2, + }, + { + type: "flatten", + }, + { + type: "dense", + units: this.options.hiddenUnits, + activation: "relu", + }, + { + type: "dense", + activation: "softmax", + }, + ]; + + return this.createNetworkLayers(layers); + // if the task is classification and sequential modality + case "classification_linear": + layers = [ + { + type: "lstm", + units: 16, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + returnSequences: true, + }, + { + type: "lstm", + units: 8, + activation: "relu", + returnSequences: false, + }, + { + type: "dense", + units: this.options.hiddenUnits, + activation: "relu", + }, + { + type: "dense", + activation: "softmax", + }, + ]; + + return this.createNetworkLayers(layers); + + // if the task is regression + case "regression_spatial": + layers = [ + { + type: "conv1d", + filters: 8, + kernelSize: 3, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + }, + { + type: "maxPooling1d", + poolSize: 2, + }, + { + type: "conv1d", + filters: 16, + kernelSize: 3, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + }, + { + type: "maxPooling1d", + poolSize: 2, + }, + { + type: "flatten", + }, + { + type: "dense", + units: this.options.hiddenUnits, + activation: "relu", + }, + { + type: "dense", + activation: "sigmoid", + }, + ]; + + return this.createNetworkLayers(layers); + + case "regression_linear": + layers = [ + { + type: "lstm", + units: 16, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + returnSequences: true, + }, + { + type: "lstm", + units: 8, + activation: "relu", + }, + { + type: "dense", + units: this.options.hiddenUnits, + activation: "relu", + }, + { + type: "dense", + activation: "sigmoid", + }, + ]; + + return this.createNetworkLayers(layers); + + default: + console.log("no inputUnits or outputUnits defined"); + layers = [ + { + type: "lstm", + units: 16, + activation: "relu", + inputShape: this.neuralNetworkData.meta.seriesShape, + }, + { + type: "lstm", + units: 8, + activation: "relu", + }, + { + type: "dense", + units: this.options.hiddenUnits, + activation: "relu", + }, + { + type: "dense", + activation: "sigmoid", + }, + ]; + return this.createNetworkLayers(layers); + } + } + + addLayer(layer) { + this.neuralNetwork.addLayer(layer); + } + + compile() { + const LEARNING_RATE = this.options.learningRate; + + let options = {}; + + if ( + this.options.task === "classification" || + this.options.task === "imageClassification" + ) { + options = { + loss: "categoricalCrossentropy", + optimizer: tf.train.adam, + metrics: ["accuracy"], + }; + } else if (this.options.task === "regression") { + options = { + loss: "meanSquaredError", + optimizer: tf.train.adam, + metrics: ["accuracy"], + }; + } + + options.optimizer = options.optimizer + ? this.neuralNetwork.setOptimizerFunction( + LEARNING_RATE, + options.optimizer + ) + : this.neuralNetwork.setOptimizerFunction(LEARNING_RATE, tf.train.sgd); + + this.neuralNetwork.compile(options); + + // if debug mode is true, then show the model summary + if (this.options.debug) { + this.neuralNetworkVis.modelSummary( + { + name: "Model Summary", + }, + this.neuralNetwork.model + ); + } + } + + async normalizeData() { + if (!this.neuralNetworkData.data.raw.length > 0) { + throw new Error( + "Empty Data Error: You Cannot Normalize/Train without adding any data! Please add data first" + ); + } + if (!this.neuralNetworkData.isMetadataReady) { + this.createMetaData(); + } + + if (!this.neuralNetworkData.isWarmedUp) { + this.prepareForTraining(); + } + + const trainingData = this.neuralNetworkData.normalizeDataRaw(); + + // set this equal to the training data + this.data.training = trainingData; + + // set isNormalized to true + this.neuralNetworkData.meta.isNormalized = true; + } + + // //////// + + classify(_input, _cb) { + return callCallback(this.classifyInternal(_input), _cb); + } + + async classifyInternal(_input) { + const { meta } = this.neuralNetworkData; + const headers = Object.keys(meta.inputs); + + let inputData; + + inputData = this.formatInputsForPredictionAll(_input); + + const unformattedResults = await this.neuralNetwork.classify(inputData); + inputData.dispose(); + + if (meta !== null) { + const label = Object.keys(meta.outputs)[0]; + const vals = Object.entries(meta.outputs[label].legend); + + const formattedResults = unformattedResults.map((unformattedResult) => { + return vals + .map((item, idx) => { + return { + [item[0]]: unformattedResult[idx], + label: item[0], + confidence: unformattedResult[idx], + }; + }) + .sort((a, b) => b.confidence - a.confidence); + }); + + // return single array if the length is less than 2, + // otherwise return array of arrays + if (formattedResults.length < 2) { + return formattedResults[0]; + } + return formattedResults; + } + + return unformattedResults; + } + + formatInputsForPredictionAll(_input) { + const { meta } = this.neuralNetworkData; + const inputHeaders = Object.keys(meta.inputs); + + const formatted_inputs = tsUtils.verifyAndFormatInputs( + _input, + null, + this.options + ); + const normalized_inputs = this.neuralNetworkData.normalizePredictData( + formatted_inputs, + meta.inputs + ); + const output = tf.tensor(normalized_inputs); + + return output; + } + + predict(_input, _cb) { + return callCallback(this.predictInternal(_input), _cb); + } + + async predictInternal(_input) { + const { meta } = this.neuralNetworkData; + + const inputData = this.formatInputsForPredictionAll(_input); + + const unformattedResults = await this.neuralNetwork.predict(inputData); + inputData.dispose(); + + if (meta !== null) { + const labels = Object.keys(meta.outputs); + + const formattedResults = unformattedResults.map((unformattedResult) => { + return labels.map((item, idx) => { + // check to see if the data were normalized + // if not, then send back the values, otherwise + // unnormalize then return + let val; + let unNormalized; + if (meta.isNormalized) { + const { min, max } = meta.outputs[item]; + val = nnUtils.unnormalizeValue(unformattedResult[idx], min, max); + unNormalized = unformattedResult[idx]; + } else { + val = unformattedResult[idx]; + } + + const d = { + [labels[idx]]: val, + label: item, + value: val, + }; + + // if unNormalized is not undefined, then + // add that to the output + if (unNormalized) { + d.unNormalizedValue = unNormalized; + } + + return d; + }); + }); + + // return single array if the length is less than 2, + // otherwise return array of arrays + if (formattedResults.length < 2) { + return formattedResults[0]; + } + return formattedResults; + } + + // if no meta exists, then return unformatted results; + return unformattedResults; + } + + /** + * //////////////////////////////////////////////////////////// + * Save / Load Data + * //////////////////////////////////////////////////////////// + */ + + saveData(name, callback) { + const args = handleArguments(name, callback); + return callCallback( + this.neuralNetworkData.saveData(args.name), + args.callback + ); + } + + async loadData(filesOrPath, callback) { + return callCallback(this.neuralNetworkData.loadData(filesOrPath), callback); + } + + async loadDataFromUrl(dataUrl, inputs, outputs) { + let json; + let dataFromUrl; + try { + if (dataUrl.endsWith(".csv")) { + dataFromUrl = await this.neuralNetworkData.loadCSV( + dataUrl, + inputs, + outputs + ); + } else if (dataUrl.endsWith(".json")) { + dataFromUrl = await this.neuralNetworkData.loadJSON( + dataUrl, + inputs, + outputs + ); + } else if (dataUrl.includes("blob")) { + dataFromUrl = await this.loadBlob(dataUrl, inputs, outputs); + } else { + throw new Error("Not a valid data format. Must be csv or json"); + } + } catch (error) { + console.error(error); + throw new Error(error); + } + + dataFromUrl.map((item) => { + this.addData(item.xs, item.ys); + }); + + this.createMetaData(); + + this.prepareForTraining(); + } + + /** + * //////////////////////////////////////////////////////////// + * Save / Load Model + * //////////////////////////////////////////////////////////// + */ + + async save(name, callback) { + const args = handleArguments(name, callback); + const modelName = args.string || "model"; + // save the model + return callCallback( + Promise.all([ + this.neuralNetwork.save(modelName), + this.neuralNetworkData.saveMeta(modelName), + ]), + args.callback + ); + } + + /** + * @public - also called internally by init() when there is a modelUrl in the options + * load a model and metadata + * @param {string | FileList | Object} filesOrPath - The URL of the file to load, + * or a FileList object (.files) from an HTML element <input type="file">. + * @param {ML5Callback<void[]>} [callback] Optional - A function to call when the loading is complete. + * @return {Promise<void[]>} + */ + async load(filesOrPath, callback) { + return callCallback( + Promise.all([ + this.neuralNetwork.load(filesOrPath), + this.neuralNetworkData.loadMeta(filesOrPath), + ]), + callback + ); + } + + /** + * dispose and release memory for a model + */ + dispose() { + this.neuralNetwork.dispose(); + } + + padCoordinates(coordinates, targetPointCount) { + const maxEpsilon = int(coordinates.length / 2); + return tsUtils.padCoordinates(coordinates, targetPointCount, maxEpsilon); + } +} + +const TimeSeries = (inputsOrOptions, outputsOrCallback, callback) => { + let options; + let cb; + + if (inputsOrOptions instanceof Object) { + options = inputsOrOptions; + cb = outputsOrCallback; + } else { + options = { + inputs: inputsOrOptions, + outputs: outputsOrCallback, + }; + cb = callback; + } + + const instance = new timeSeries(options, cb); + return instance; +}; + +export default TimeSeries; diff --git a/src/TimeSeries/timeSeries.js b/src/TimeSeries/timeSeries.js new file mode 100644 index 00000000..fc560ecf --- /dev/null +++ b/src/TimeSeries/timeSeries.js @@ -0,0 +1,251 @@ +import * as tf from "@tensorflow/tfjs"; +import { saveBlob } from "../utils/io"; +import { randomGaussian } from "../utils/random"; + +/* + +Things changed from neural network class: + +1. No neuro evolution + +*/ + +class NeuralNetwork { + constructor() { + // flags + this.isTrained = false; + this.isCompiled = false; + this.isLayered = false; + /** + * @type {tf.Sequential | null} - the TensorFlow model + */ + this.model = null; + + // methods + this.init = this.init.bind(this); + this.createModel = this.createModel.bind(this); + this.addLayer = this.addLayer.bind(this); + this.compile = this.compile.bind(this); + this.setOptimizerFunction = this.setOptimizerFunction.bind(this); + this.train = this.train.bind(this); + this.predict = this.predict.bind(this); + this.classify = this.classify.bind(this); + this.save = this.save.bind(this); + this.load = this.load.bind(this); + + // initialize + this.init(); + } + + /** + * initialize with create model + */ + init() { + this.createModel(); + } + + /** + * creates a sequential model + * uses switch/case for potential future where different formats are supported + * @param {*} _type + */ + createModel(_type = "sequential") { + switch (_type.toLowerCase()) { + case "sequential": + this.model = tf.sequential(); + return this.model; + default: + this.model = tf.sequential(); + return this.model; + } + } + + /** + * add layer to the model + * if the model has 2 or more layers switch the isLayered flag + * @param {tf.Layer} layer + * @void + */ + addLayer(layer) { + this.model.add(layer); + + // check if it has at least an input and output layer + if (this.model.layers.length >= 2) { + this.isLayered = true; + } + } + + /** + * Compile the model + * if the model is compiled, set the isCompiled flag to true + * @param {*} _modelOptions + */ + compile(_modelOptions) { + this.model.compile(_modelOptions); + this.isCompiled = true; + } + + /** + * Set the optimizer function given the learning rate + * as a parameter + * @param {*} learningRate + * @param {*} optimizer + */ + setOptimizerFunction(learningRate, optimizer) { + return optimizer.call(this, learningRate); + } + + /** + * Train the model + * @param {Object} _options + */ + async train(_options) { + const TRAINING_OPTIONS = _options; + + const xs = TRAINING_OPTIONS.inputs; + const ys = TRAINING_OPTIONS.outputs; + console.log("train", xs, ys); + const { batchSize, epochs, shuffle, validationSplit, whileTraining } = + TRAINING_OPTIONS; + + await this.model.fit(xs, ys, { + batchSize, + epochs, + shuffle, + validationSplit, + callbacks: whileTraining, + }); + + xs.dispose(); + ys.dispose(); + + this.isTrained = true; + } + + /** + * returns the prediction as an array synchronously + * @param {*} _inputs + */ + predictSync(_inputs) { + const output = tf.tidy(() => { + return this.model.predict(_inputs); + }); + const result = output.arraySync(); + + output.dispose(); + _inputs.dispose(); + + return result; + } + + /** + * returns the prediction as an array + * @param {*} _inputs + */ + async predict(_inputs) { + const output = tf.tidy(() => { + return this.model.predict(_inputs); + }); + const result = await output.array(); + + output.dispose(); + _inputs.dispose(); + + return result; + } + + /** + * classify is the same as .predict() + * @param {*} _inputs + */ + async classify(_inputs) { + return this.predict(_inputs); + } + + /** + * classify is the same as .predict() + * @param {*} _inputs + */ + classifySync(_inputs) { + return this.predictSync(_inputs); + } + + // predictMultiple + // classifyMultiple + // are the same as .predict() + + /** + * save the model.json and the weights.bin files + * @param {string} modelName + * @return {Promise<void>} + */ + async save(modelName = "model") { + await this.model.save( + tf.io.withSaveHandler(async (data) => { + this.weightsManifest = { + modelTopology: data.modelTopology, + weightsManifest: [ + { + paths: [`./${modelName}.weights.bin`], + weights: data.weightSpecs, + }, + ], + }; + console.log("data.weightData", data.weightData); + await saveBlob( + data.weightData, + `${modelName}.weights.bin`, + "application/octet-stream" + ); + console.log("this.weightsManifest", this.weightsManifest); + await saveBlob( + JSON.stringify(this.weightsManifest), + `${modelName}.json`, + "text/plain" + ); + }) + ); + } + + /** + * loads the model and weights + * @param {string | FileList | Object} filesOrPath + */ + async load(filesOrPath) { + if (filesOrPath instanceof FileList) { + const files = Array.from(filesOrPath); + // find the correct files + const model = files.find( + (file) => file.name.includes(".json") && !file.name.includes("_meta") + ); + const weights = files.find((file) => file.name.includes(".bin")); + // load the model + this.model = await tf.loadLayersModel( + tf.io.browserFiles([model, weights]) + ); + } else if (filesOrPath instanceof Object) { + this.model = await tf.loadLayersModel( + tf.io.http(filesOrPath.model, { + // Override the weights path from the JSON weightsManifest + weightUrlConverter: (weightFileName) => { + return filesOrPath.weights || weightFileName; + }, + }) + ); + } else { + this.model = await tf.loadLayersModel(filesOrPath); + } + + this.isCompiled = true; + this.isLayered = true; + this.isTrained = true; + } + + /** + * dispose and release the memory for the model + */ + dispose() { + this.model.dispose(); + } +} +export default NeuralNetwork; diff --git a/src/TimeSeries/timeSeriesData.js b/src/TimeSeries/timeSeriesData.js new file mode 100644 index 00000000..ab5f10a8 --- /dev/null +++ b/src/TimeSeries/timeSeriesData.js @@ -0,0 +1,943 @@ +import * as tf from "@tensorflow/tfjs"; +import axios from "axios"; +import { saveBlob } from "../utils/io"; +import modelLoader from "../utils/modelLoader"; +import nnUtils from "../NeuralNetwork/NeuralNetworkUtils"; + +import tsUtils from "./timeSeriesUtils"; + +class NeuralNetworkData { + constructor() { + this.meta = { + inputUnits: null, // Number + outputUnits: null, // Number + // objects describing input/output data by property name + inputs: {}, // { name1: {dtype}, name2: {dtype} } + outputs: {}, // { name1: {dtype} } + isNormalized: false, // Boolean - keep this in meta for model saving/loading + }; + + this.isMetadataReady = false; + this.isWarmedUp = false; + + this.data = { + raw: [], // array of {xs:[{},{}], ys:{}} + }; + } + + /** + * //////////////////////////////////////////////////////// + * Add Data + * //////////////////////////////////////////////////////// + */ + + /** + * Add Data + * @param {object} xInputObj, {key: value}, key must be the name of the property value must be a String, Number, or Array + * @param {*} yInputObj, {key: value}, key must be the name of the property value must be a String, Number, or Array + * @void - updates this.data + */ + addData(xInputObj, yInputObj) { + this.data.raw.push({ + xs: xInputObj, + ys: yInputObj, + }); + } + + /** + * //////////////////////////////////////////////////////// + * Summarize Data + * //////////////////////////////////////////////////////// + */ + + /** + * create the metadata from the data + * this covers: + * 1. getting the datatype from the data + * 2. getting the min and max from the data + * 3. getting the oneHot encoded values + * 4. getting the inputShape and outputUnits from the data + * @param {Array<number>} [inputShape] + * @void + */ + createMetadata(inputShape = null) { + // get the data type for each property + this.getDTypesFromSeriesData(); + // get the stats - min, max + this.getDataStats(); + // onehot encode + this.getDataOneHot(); + // calculate the input units from the data + this.getDataUnits(inputShape); + // get the shape of batch + + this.isMetadataReady = true; + } + + /** + * getDTypesFromData + * gets the data types of the data we're using + * important for handling oneHot + * @private + * @void - updates this.meta + */ + getDTypesFromSeriesData() { + const meta = { + ...this.meta, + inputs: {}, + outputs: {}, + }; + + const sample = this.data.raw[0]; + + //consistent dTypes have already been checked at add data + const xs = Object.keys(sample.xs[0]); //since time series data is in form of array + const ys = Object.keys(sample.ys); + xs.forEach((prop) => { + meta.inputs[prop] = { + dtype: nnUtils.getDataType(sample.xs[0][prop]), + }; + }); + + ys.forEach((prop) => { + meta.outputs[prop] = { + dtype: nnUtils.getDataType(sample.ys[prop]), + }; + }); + + this.meta = meta; + } + + /** + * get stats about the data + * @private + * @void + */ + getDataStats() { + this.meta.inputs = this.getInputMetaStats(this.meta.inputs, "xs"); + this.meta.outputs = this.getInputMetaStats(this.meta.outputs, "ys"); + } + + /** + * get back the min and max of each label + * @private + * @param {Object} inputOrOutputMeta + * @param {"xs" | "ys"} xsOrYs + * @return {Object} + */ + getInputMetaStats(inputOrOutputMeta, xsOrYs) { + const inputMeta = Object.assign({}, inputOrOutputMeta); + + Object.keys(inputMeta).forEach((k) => { + if (inputMeta[k].dtype === "string") { + inputMeta[k].min = 0; + inputMeta[k].max = 1; + } else if (inputMeta[k].dtype === "number") { + let dataAsArray; + if (xsOrYs === "ys") { + dataAsArray = this.data.raw.map((item) => item[xsOrYs][k]); + } else if (xsOrYs === "xs") { + dataAsArray = this.data.raw.flatMap((item) => + item[xsOrYs].map((obj) => obj[k]) + ); + } + inputMeta[k].min = nnUtils.getMin(dataAsArray); + inputMeta[k].max = nnUtils.getMax(dataAsArray); + } else if (inputMeta[k].dtype === "array") { + const dataAsArray = this.data.raw.map((item) => item[xsOrYs][k]).flat(); + inputMeta[k].min = nnUtils.getMin(dataAsArray); + inputMeta[k].max = nnUtils.getMax(dataAsArray); + } + }); + + return inputMeta; + } + + /** + * getDataOneHot + * creates onehot encodings for the input and outputs + * and adds them to the meta info + * @private + * @void + */ + getDataOneHot() { + this.meta.inputs = this.getInputMetaOneHot(this.meta.inputs, "xs"); + this.meta.outputs = this.getInputMetaOneHot(this.meta.outputs, "ys"); + } + + /** + * getOneHotMeta + * @param {Object} _inputsMeta + * @param {"xs" | "ys"} xsOrYs + * @return {Object} + */ + getInputMetaOneHot(_inputsMeta, xsOrYs) { + const inputsMeta = Object.assign({}, _inputsMeta); + + Object.entries(inputsMeta).forEach((arr) => { + // the key + const key = arr[0]; + // the value + const { dtype } = arr[1]; + + if (dtype === "string") { + const uniqueVals = [ + ...new Set(this.data.raw.map((obj) => obj[xsOrYs][key])), + ]; + const oneHotMeta = this.createOneHotEncodings(uniqueVals); + inputsMeta[key] = { + ...inputsMeta[key], + ...oneHotMeta, + }; + } + }); + return inputsMeta; + } + + /** + * get the data units, inputshape and output units + * @private + * @param {Array<number>} arrayShape + * @void + */ + getDataUnits(arrayShape = null) { + // if the data has a shape pass it in + if (arrayShape) { + this.meta.inputUnits = arrayShape; + } else { + this.meta.inputUnits = [this.getInputMetaUnits(this.meta.inputs)].flat(); + } + + this.meta.outputUnits = this.getInputMetaUnits(this.meta.outputs); + } + + /** + * @private + * @param {Object} inputsMeta + * @return {number | Array<number>} + */ + // eslint-disable-next-line class-methods-use-this + getInputMetaUnits(inputsMeta) { + let units = 0; + + Object.entries(inputsMeta).forEach((arr) => { + const { dtype } = arr[1]; + if (dtype === "number") { + units += 1; + } else if (dtype === "string") { + const { uniqueValues } = arr[1]; + + const uniqueCount = uniqueValues.length; + units += uniqueCount; + } else if (dtype === "array") { + // TODO: User must input the shape of the + // image size correctly. + units = []; + } + }); + + return units; + } + + /** + * Returns a legend mapping the + * data values to oneHot encoded values + * @private + * @param {Array<string>} _uniqueValuesArray + * @return {Object} + */ + // eslint-disable-next-line class-methods-use-this, no-unused-vars + createOneHotEncodings(_uniqueValuesArray) { + return tf.tidy(() => { + const output = { + uniqueValues: _uniqueValuesArray, + legend: {}, + }; + + const uniqueVals = _uniqueValuesArray; // [...new Set(this.data.raw.map(obj => obj.xs[prop]))] + // get back values from 0 to the length of the uniqueVals array + const onehotValues = uniqueVals.map((item, idx) => idx); + // oneHot encode the values in the 1d tensor + const oneHotEncodedValues = tf.oneHot( + tf.tensor1d(onehotValues, "int32"), + uniqueVals.length + ); + // convert them from tensors back out to an array + const oneHotEncodedValuesArray = oneHotEncodedValues.arraySync(); + + // populate the legend with the key/values + uniqueVals.forEach((uVal, uIdx) => { + output.legend[uVal] = oneHotEncodedValuesArray[uIdx]; + }); + + return output; + }); + } + + /** + * //////////////////////////////////////////////////////// + * Tensor handling + * //////////////////////////////////////////////////////// + */ + + /** + * convertRawToTensors + * converts array of {xs, ys} to tensors + * @param {*} dataRaw + * + * @return {{ inputs: tf.Tensor, outputs: tf.Tensor }} + */ + // eslint-disable-next-line class-methods-use-this, no-unused-vars + convertRawToTensors(dataRaw) { + const meta = Object.assign({}, this.meta); + const dataLength = dataRaw.length; + + return tf.tidy(() => { + const inputArr = []; + const outputArr = []; + + dataRaw.forEach((row) => { + // get xs + // const xs = Object.keys(meta.inputs) + // .map((k) => { + // return row.xs[k]; + // }) + // .flat(); + + // inputArr.push(xs); + + const xs = row.xs; + inputArr.push(xs); + + // get ys + const ys = Object.keys(meta.outputs) + .map((k) => { + return row.ys[k]; + }) + .flat(); + + outputArr.push(ys); + }); + + // const inputs = tf.tensor(inputArr.flat(), [ + // dataLength, + // ...meta.inputUnits, + // ]); + const inputs = tf.tensor(inputArr); + + const outputs = tf.tensor(outputArr.flat(), [ + dataLength, + meta.outputUnits, + ]); + + return { + inputs, + outputs, + }; + }); + } + + /** + * //////////////////////////////////////////////////////// + * data normalization / unnormalization + * //////////////////////////////////////////////////////// + */ + + /** + * normalize the dataRaw input + * @return {Array<object>} + */ + normalizeDataRaw() { + const normXs = this.normalizeInputData(this.meta.inputs, "xs"); + const normYs = this.normalizeInputData(this.meta.outputs, "ys"); + const normalizedData = tsUtils.zipArraySequence(normXs, normYs); + + return normalizedData; + } + + /** + * @param {Object} inputOrOutputMeta + * @param {"xs" | "ys"} xsOrYs + * @return {Array<object>} + */ + normalizeInputData(inputOrOutputMeta, xsOrYs) { + const dataRaw = this.data.raw; + + // the data length + const dataLength = dataRaw.length; + + // the copy of the inputs.meta[inputOrOutput] + const inputMeta = Object.assign({}, inputOrOutputMeta); + + // normalized output object + const normalized = {}; + Object.keys(inputMeta).forEach((k) => { + // get the min and max values + const options = { + min: inputMeta[k].min, + max: inputMeta[k].max, + }; + + // depending on the input type, normalize accordingly + if (inputMeta[k].dtype === "string") { + const dataAsArray = dataRaw.map((item) => item[xsOrYs][k]); + options.legend = inputMeta[k].legend; + normalized[k] = this.normalizeArray(dataAsArray, options); + } else if (inputMeta[k].dtype === "number") { + let dataAsArray; + if (xsOrYs === "ys") { + dataAsArray = this.data.raw.map((item) => item[xsOrYs][k]); + } else if (xsOrYs === "xs") { + dataAsArray = this.data.raw.flatMap((item) => + item[xsOrYs].map((obj) => obj[k]) + ); + } + normalized[k] = this.normalizeArray(dataAsArray, options); + } else if (inputMeta[k].dtype === "array") { + const dataAsArray = dataRaw.map((item) => item[xsOrYs][k]); + normalized[k] = dataAsArray.map((item) => + this.normalizeArray(item, options) + ); + } + }); + + let output; + if (xsOrYs == "ys") { + output = [...new Array(dataLength).fill(null)].map((item, idx) => { + const row = { + [xsOrYs]: {}, + }; + + Object.keys(inputMeta).forEach((k) => { + row[xsOrYs][k] = normalized[k][idx]; + }); + + return row; + }); + } else if (xsOrYs == "xs") { + // reshape array - already ready for tensorconversion + const features = Object.keys(inputMeta); + const feature_length = features.length; + + const seriesStep = dataRaw[0]["xs"].length; + + const batch = normalized[features[0]].length / seriesStep; + + this.meta.seriesShape = [seriesStep, feature_length]; + console.log("series shape", this.meta.seriesShape); + let zipped = []; + + // zip arrays before reshaping + for (let idx = 0; idx < seriesStep * feature_length * batch; idx++) { + features.forEach((k) => { + zipped.push(normalized[k][idx]); + }); + } + + // reshaping + output = tsUtils.reshapeTo3DArray(zipped, [ + batch, + seriesStep, + feature_length, + ]); + } + + console.log("thismeta", this.meta); + return output; + } + + /** + * normalizeArray + * @param {*} _input + * @param {*} _options + */ + // eslint-disable-next-line no-unused-vars, class-methods-use-this + normalizeArray(inputArray, options) { + const { min, max } = options; + + // if the data are onehot encoded, replace the string + // value with the onehot array + // if none exists, return the given value + if (options.legend) { + const normalized = inputArray.map((v) => { + return options.legend[v] ? options.legend[v] : v; + }); + return normalized; + } + + // if the dtype is a number + if (inputArray.every((v) => typeof v === "number")) { + const normalized = inputArray.map((v) => + nnUtils.normalizeValue(v, min, max) + ); + return normalized; + } + + // otherwise return the input array + // return inputArray; + throw new Error("error in inputArray of normalizeArray() function"); + } + + normalizePredictData(dataRaw, inputOrOutputMeta) { + const inputMeta = Object.assign({}, inputOrOutputMeta); + const xsOrYs = "xs"; + const predict_normalized = {}; + Object.keys(inputMeta).forEach((k) => { + // get the min and max values + const options = { + min: inputMeta[k].min, + max: inputMeta[k].max, + }; + if (inputMeta[k].dtype === "string") { + const dataAsArray = dataRaw.map((item) => item[xsOrYs][k]); + options.legend = inputMeta[k].legend; + predict_normalized[k] = this.normalizeArray(dataAsArray, options); + } else if (inputMeta[k].dtype === "number") { + const dataAsArray = Array(dataRaw).flatMap((item) => + item.map((obj) => obj[k]) + ); + console.log(dataAsArray); + predict_normalized[k] = this.normalizeArray(dataAsArray, options); + } + }); + + console.log("done", predict_normalized); + + const features = Object.keys(inputMeta); + const feature_length = features.length; + + const seriesStep = dataRaw.length; + + const batch = 1; + let zipped = []; + + // zip arrays before reshaping + for (let idx = 0; idx < seriesStep * feature_length * batch; idx++) { + features.forEach((k) => { + zipped.push(predict_normalized[k][idx]); + }); + } + // reshaping + const output = tsUtils.reshapeTo3DArray(zipped, [ + batch, + seriesStep, + feature_length, + ]); + return output; + } + + /** + * unNormalizeArray + * @param {*} _input + * @param {*} _options + */ + // eslint-disable-next-line no-unused-vars, class-methods-use-this + // unnormalizeArray(inputArray, options) { + // const { min, max } = options; + + // // if the data is onehot encoded then remap the + // // values from those oneHot arrays + // if (options.legend) { + // const unnormalized = inputArray.map((v) => { + // let res; + // Object.entries(options.legend).forEach((item) => { + // const key = item[0]; + // const val = item[1]; + // const matches = v + // .map((num, idx) => num === val[idx]) + // .every((truthy) => truthy === true); + // if (matches) res = key; + // }); + // return res; + // }); + + // return unnormalized; + // } + + // // if the dtype is a number + // if (inputArray.every((v) => typeof v === "number")) { + // const unnormalized = inputArray.map((v) => + // nnUtils.unnormalizeValue(v, min, max) + // ); + // return unnormalized; + // } + + // // otherwise return the input array + // // return inputArray; + // throw new Error("error in inputArray of normalizeArray() function"); + // } + + /* + * //////////////////////////////////////////////// + * One hot encoding handling + * //////////////////////////////////////////////// + */ + + /** + * applyOneHotEncodingsToDataRaw + * does not set this.data.raws + * but rather returns them + */ + applyOneHotEncodingsToDataRaw() { + const meta = Object.assign({}, this.meta); + + const output = this.data.raw.map((row) => { + const xs = { + ...row.xs, + }; + const ys = { + ...row.ys, + }; + + // get xs + Object.keys(meta.inputs).forEach((k) => { + if (meta.inputs[k].legend) { + xs[k] = meta.inputs[k].legend[row.xs[k]]; + } + }); + + Object.keys(meta.outputs).forEach((k) => { + if (meta.outputs[k].legend) { + ys[k] = meta.outputs[k].legend[row.ys[k]]; + } + }); + + return { + xs, + ys, + }; + }); + return output; + } + + /** + * //////////////////////////////////////////////// + * saving / loading data + * //////////////////////////////////////////////// + */ + + /** + * Loads data from a URL using the appropriate function + * @param {*} dataUrl + * @param {*} inputs + * @param {*} outputs + * @void + */ + async loadDataFromUrl(dataUrl, inputs, outputs) { + try { + if (dataUrl.endsWith(".csv")) { + await this.loadCSV(dataUrl, inputs, outputs); + } else if (dataUrl.endsWith(".json")) { + await this.loadJSON(dataUrl, inputs, outputs); + } else if (dataUrl.includes("blob")) { + await this.loadBlob(dataUrl, inputs, outputs); + } else { + throw new Error("Not a valid data format. Must be csv or json"); + } + } catch (error) { + console.error(error); + throw new Error(error); + } + } + + /** + * loadJSON + * @param {*} dataUrlOrJson + * @param {*} inputLabels + * @param {*} outputLabels + * @void + */ + async loadJSON(dataUrlOrJson, inputLabels, outputLabels) { + try { + let json; + // handle loading parsedJson + if (dataUrlOrJson instanceof Object) { + json = Object.assign({}, dataUrlOrJson); + } else { + const { data } = await axios.get(dataUrlOrJson); + json = data; + } + + // format the data.raw array + // this.formatRawData(json, inputLabels, outputLabels); + return this.findEntries(json); + } catch (err) { + console.error("error loading json"); + throw new Error(err); + } + } + + /** + * loadCSV + * @param {*} dataUrl + * @param {*} inputLabels + * @param {*} outputLabels + * @void + */ + async loadCSV(dataUrl, inputLabels, outputLabels) { + try { + const myCsv = tf.data.csv(dataUrl); + const loadedData = await myCsv.toArray(); + const json = { + entries: loadedData, + }; + // format the data.raw array + // this.formatRawData(json, inputLabels, outputLabels); + return this.findEntries(json); + } catch (err) { + console.error("error loading csv", err); + throw new Error(err); + } + } + + /** + * loadBlob + * @param {*} dataUrlOrJson + * @param {*} inputLabels + * @param {*} outputLabels + * @void + */ + async loadBlob(dataUrlOrJson, inputLabels, outputLabels) { + try { + const { data } = await axios.get(dataUrlOrJson); + const text = data; // await data.text(); + + if (nnUtils.isJsonOrString(text)) { + const json = JSON.parse(text); + await this.loadJSON(json, inputLabels, outputLabels); + } else { + const json = this.csvToJSON(text); + await this.loadJSON(json, inputLabels, outputLabels); + } + } catch (err) { + console.log("mmm might be passing in a string or something!", err); + throw new Error(err); + } + } + + /** + * loadData from fileinput or path + * @param {string | FileList | Object} filesOrPath + * @return {Promise<void>} + */ + async loadData(filesOrPath) { + try { + let loadedData; + + if (typeof filesOrPath !== "string") { + const file = filesOrPath[0]; + const fr = new FileReader(); + fr.readAsText(file); + if (file.name.includes(".json")) { + const temp = await file.text(); + loadedData = JSON.parse(temp); + } else { + console.log( + 'data must be a json object containing an array called "data" or "entries' + ); + } + } else { + loadedData = await axios.get(filesOrPath, { responseType: "text" }); + const text = JSON.stringify(loadedData.data); + if (nnUtils.isJsonOrString(text)) { + loadedData = JSON.parse(text); + console.log(loadedData); + } else { + console.log( + "Whoops! something went wrong. Either this kind of data is not supported yet or there is an issue with .loadData" + ); + } + } + + this.data.raw = this.findEntries(loadedData); + + // check if a data or entries property exists + if (!this.data.raw.length > 0) { + console.log( + 'data must be a json object containing an array called "data" ' + ); + } + } catch (error) { + throw new Error(error); + } + } + + /** + * saveData + * @param {string} [name] + * @return {Promise<void>} + */ + async saveData(name) { + const today = new Date(); + const date = `${String(today.getFullYear())}-${String( + today.getMonth() + 1 + )}-${String(today.getDate())}`; + const time = `${String(today.getHours())}-${String( + today.getMinutes() + )}-${String(today.getSeconds())}`; + const datetime = `${date}_${time}`; + + let dataName = datetime; + if (name) dataName = name; + + const output = { + data: this.data.raw, + }; + + await saveBlob(JSON.stringify(output), `${dataName}.json`, "text/plain"); + } + + /** + * Saves metadata of the data + * @param {string} modelName + * @return {Promise<void>} + */ + async saveMeta(modelName = "model") { + console.log("meta saved"); + await saveBlob( + JSON.stringify(this.meta), + `${modelName}_meta.json`, + "text/plain" + ); + } + + /** + * load a model and metadata + * @param {string | FileList | Object} filesOrPath + * @return {Promise<void>} + */ + async loadMeta(filesOrPath) { + if (filesOrPath instanceof FileList) { + const file = Array.from(filesOrPath).find((file) => + file.name.includes("_meta.json") + ); + if (!file) { + console.warn("no model_meta.json file found in FileList"); + return; + } + const text = await file.text(); + this.meta = JSON.parse(text); + } else if (filesOrPath instanceof Object) { + // filesOrPath = {model: URL, metadata: URL, weights: URL} + const metadataResult = await axios.get(filesOrPath.metadata); + this.meta = metadataResult.data; + } else { + const loader = modelLoader(filesOrPath); + // TODO: it is not always "model_meta.json", it is "{model_name}_meta.json" + const metaPath = loader.getPath("model_meta.json"); + // TODO: figure out how to use loader.loadMetadataJson() which has wrapped error messages + const metadataResult = await axios.get(metaPath); + this.meta = metadataResult.data; + } + + this.isMetadataReady = true; + this.isWarmedUp = true; + } + + /* + * //////////////////////////////////////////////// + * data loading helpers + * //////////////////////////////////////////////// + */ + + /** + * // TODO: convert ys into strings, if the task is classification + // if (this.config.architecture.task === "classification" && typeof output.ys[prop] !== "string") { + // output.ys[prop] += ""; + // } + * formatRawData + * takes a json and set the this.data.raw + * @param {*} json + * @param {Array<string>} inputLabels + * @param {Array<string>} outputLabels + * @void + */ + // formatRawData(json, inputLabels, outputLabels) { + + // // Recurse through the json object to find + // // an array containing `entries` or `data` + // const dataArray = this.findEntries(json); + + // if (!dataArray.length > 0) { + // console.log(`your data must be contained in an array in \n + // a property called 'entries' or 'data' of your json object`); + // } + + // //////////// + + // // set this.data.raw + // this.data.raw = result; + // } + + /** + * csvToJSON + * Creates a csv from a string + * @param {*} csv + */ + // via: http://techslides.com/convert-csv-to-json-in-javascript + // eslint-disable-next-line class-methods-use-this + csvToJSON(csv) { + // split the string by linebreak + const lines = csv.split("\n"); + const result = []; + // get the header row as an array + const headers = lines[0].split(","); + + // iterate through every row + for (let i = 1; i < lines.length; i += 1) { + // create a json object for each row + const row = {}; + // split the current line into an array + const currentline = lines[i].split(","); + + // for each header, create a key/value pair + headers.forEach((k, idx) => { + row[k] = currentline[idx]; + }); + // add this to the result array + result.push(row); + } + + return { + entries: result, + }; + } + + /** + * findEntries + * recursively attempt to find the entries + * or data array for the given json object + * @param {*} _data + */ + findEntries(_data) { + const parentCopy = Object.assign({}, _data); + + if (parentCopy.entries && parentCopy.entries instanceof Array) { + return parentCopy.entries; + } else if (parentCopy.data && parentCopy.data instanceof Array) { + return parentCopy.data; + } + + const keys = Object.keys(parentCopy); + // eslint-disable-next-line consistent-return + keys.forEach((k) => { + if (typeof parentCopy[k] === "object") { + return this.findEntries(parentCopy[k]); + } + }); + + return parentCopy; + } + + /** + * getData + * return data object's raw array + * to make getting raw data easier + */ + getData() { + const rawArray = this.data.raw; + return rawArray; + } +} + +export default NeuralNetworkData; diff --git a/src/TimeSeries/timeSeriesUtils.js b/src/TimeSeries/timeSeriesUtils.js new file mode 100644 index 00000000..5c980e58 --- /dev/null +++ b/src/TimeSeries/timeSeriesUtils.js @@ -0,0 +1,398 @@ +import { data, input } from "@tensorflow/tfjs"; +import nnUtils from "../NeuralNetwork/NeuralNetworkUtils"; + +class TimeSeriesUtils { + constructor(options) { + this.options = options || {}; + } + + /* adding data: can only accept the following formats: + - for xInputs: + 1. Sequence of objects (array of objects) + [{x: , y: },{x: , y: },{x: , y: },{x: , y: }] + 2. Sequence of arrays (array of array, order matters) + [[],[],[],[]] + 3. Sequence of values (shape should be provided by user) + [[,,,,,]] e.g. shape = {steps: 4, values: 2} will become [{x: , y: },{x: , y: },{x: , y: },{x: , y: }] + */ + + verifyAndFormatInputs(xInputs, options = null, classOptions) { + const dataFormat = this.checkInputStructure(xInputs, options); + return this.formatInputsToObjects( + xInputs, + options, + classOptions, + dataFormat + ); + } + + checkInputStructure(xInputs, options = null) { + if (!Array.isArray(xInputs)) { + throw new error("Syntax Error: Data Should be in an Array"); + } + let isObjects = true; + let isArrays = true; + let isValues = true; + + for (let i = 0; i < xInputs.length; i++) { + if (nnUtils.getDataType(xInputs[i]) === "object") { + console.log("here"); + isArrays = false; + isValues = false; + if (i > 0) { + if ( + Object.keys(xInputs[i - 1]).length !== + Object.keys(xInputs[i]).length || + nnUtils.getDataType(xInputs[i - 1]) === "object" + ) { + throw new error("Data format is inconsistent"); + } + } + } else if (Array.isArray(xInputs[i])) { + console.log("here2"); + isObjects = false; + isValues = false; + if (i > 0) { + if ( + xInputs[i - 1].length !== xInputs[i].length || + !Array.isArray(xInputs[i - 1]) + ) { + throw new error("Data format is inconsistent"); + } + } + } else { + if (options.inputLabels) { + isObjects = false; + isArrays = false; + } else { + throw new error("inputLabels is needed for 1D array inputs"); + } + } + + if (isObjects) { + return "ObjectSequence"; + } else if (isArrays) { + return "ArraySequence"; + } else if (isValues) { + return "ValueSequence"; + } else { + throw new error("Syntax Error: Input Structure is unknown"); + } + } + } + + formatInputsToObjects(xInputs, options = null, classOptions, dataFormat) { + switch (dataFormat) { + case "ObjectSequence": + return xInputs; + case "ArraySequence": + return this.convertArraySequence(xInputs, options, classOptions); + case "ValueSequence": + return this.convertValueSequence(xInputs, options); + default: + throw new error("Input Data Structure is unknown"); + } + } + + convertArraySequence(xInputs, options = null, classOptions) { + let label = ""; + + if (options !== null) { + if (options.inputLabels) { + label = options.inputLabels; + console.log("here1"); + } + } else if (classOptions !== null) { + if (classOptions.inputs) { + label = classOptions.inputs; + } + } + + if ( + (typeof label === "string" && label === "") || + (Array.isArray(label) && label.length === 0) + ) { + label = this.getLabelFromNestedArray(xInputs); + } + + return xInputs.map((input) => { + const obj = {}; + input.forEach((value, ind) => { + obj[label[ind]] = value; + }); + return obj; + }); + } + + convertValueSequence(xInputs, options = null) { + const { inputLabels } = options; + if (xInputs.length % inputLabels.length !== 0) { + throw new error( + "Invalid Input: Number of Labels don't match amount of values" + ); + } + return xInputs.reduce((acc, _, index, array) => { + if (index % inputLabels.length === 0) { + // Create a new object for the current set of values + const obj = {}; + for (let i = 0; i < inputLabels.length; i++) { + obj[inputLabels[i]] = array[index + i]; + } + acc.push(obj); + } + return acc; + }, []); + } + + verifyAndFormatOutputs(yInputs, options = null, classOptions) { + const { outputs } = classOptions; + + let outputLabels; + + if (options !== null) { + if (options.outputLabels) { + outputLabels = options.outputLabels; + } + } + + if (outputs.length > 0) { + if (outputs.every((item) => typeof item === "string")) { + outputLabels = outputs; + } + } else if (typeof yInputs === "object") { + outputLabels = Object.keys(yInputs); + } else { + outputLabels = nnUtils.createLabelsFromArrayValues(yInputs, "output"); + } + + // Make sure that the inputLabels and outputLabels are arrays + if (!(outputLabels instanceof Array)) { + throw new Error("outputLabels must be an array"); + } + + return nnUtils.formatDataAsObject(yInputs, outputLabels); + } + + prepareLabels(xInputs, yInputs, options = null, classOptions) { + const { inputs, outputs } = this.options; + + let inputLabels; + let outputLabels; + + // options-based values to assign + if (options !== null) { + ({ inputLabels, outputLabels } = options); + } else if (inputs.length > 0 && outputs.length > 0) { + if (inputs.every((item) => typeof item === "string")) { + inputLabels = inputs; + } + if (outputs.every((item) => typeof item === "string")) { + outputLabels = outputs; + } + + // input-based values to assign + } else { + inputLabels = this.getLabelFromNestedArray(xInputs); + if (typeof yInputs === "object") { + outputLabels = Object.keys(yInputs); + } else { + inputLabels = this.getLabelFromNestedArray(yInputs); + } + } + + // Make sure that the inputLabels and outputLabels are arrays + if (!(inputLabels instanceof Array)) { + throw new Error("inputLabels must be an array"); + } + if (!(outputLabels instanceof Array)) { + throw new Error("outputLabels must be an array"); + } + + return inputLabels, outputLabels; + } + + getLabelFromNestedArray(xInputs, prefix = "label") { + // Recursive function to find the deepest level of the array + function traverseArray(array) { + if ( + array.length > 0 && + (typeof array[0] === "string" || typeof array[0] === "number") + ) { + return array.map((_, index) => `${prefix}_${index}`); + } else { + for (const item of array) { + if (Array.isArray(item)) { + const result = traverseArray(item); + if (result) return result; + } + } + } + return null; + } + + if (Array.isArray(xInputs)) { + return traverseArray(xInputs); + } else { + throw new Error("Input data must be an array."); + } + } + + // normalize utilities + reshapeTo3DArray(data, shape) { + const [batch, timeStep, feature] = shape; + let result = []; + let index = 0; + + for (let i = 0; i < batch; i++) { + let batchArray = []; + for (let j = 0; j < timeStep; j++) { + let timeStepArray = []; + for (let k = 0; k < feature; k++) { + timeStepArray.push(data[index]); + index++; + } + batchArray.push(timeStepArray); + } + result.push(batchArray); + } + + return result; + } + + zipArraySequence(arr1, arr2) { + if (arr1.length !== arr2.length) { + console.error("arrays do not have the same length"); + return []; + } + + return arr1.map((xs, idx) => { + const ys = arr2[idx].ys; // Extract the inner `ys` object + return { + xs: xs, + ys: ys, + }; + }); + } + + // point simplification utilities - Ramer-Douglas-Peucker (RDP) algorithm + padCoordinates(allPoints, targetPointCount, maxEpsilon = 50) { + const rdpPoints = []; + + const epsilon = this.findEpsilonForPointCount( + allPoints, + targetPointCount, + maxEpsilon + ); + + const total = allPoints.length; + const start = allPoints[0]; + const end = allPoints[total - 1]; + rdpPoints.push(start); + this.rdp(0, total - 1, allPoints, rdpPoints, epsilon); + rdpPoints.push(end); + + if (rdpPoints.length > targetPointCount) { + return rdpPoints.slice(0, targetPointCount); + } else if (rdpPoints.length < targetPointCount) { + const filler = new Array(targetPointCount - rdpPoints.length).fill( + rdpPoints[rdpPoints.length - 1] + ); + + rdpPoints.push(...filler); + return rdpPoints; + } + + return rdpPoints; + } + + findEpsilonForPointCount(points, targetCount, maxEpsilon) { + let low = 0; + let high = maxEpsilon; + let mid; + let simplifiedPointsCount = 0; + + while (high - low > 0.001) { + // Tolerance for approximation + mid = (low + high) / 2; + simplifiedPointsCount = this.getSimplifiedPointCount(points, mid); + if (simplifiedPointsCount > targetCount) { + low = mid; + } else { + high = mid; + } + } + + return mid; + } + + getSimplifiedPointCount(points, epsilon) { + const rdpPoints = []; + const total = points.length; + const start = points[0]; + const end = points[total - 1]; + rdpPoints.push(start); + this.rdp(0, total - 1, points, rdpPoints, epsilon); + rdpPoints.push(end); + return rdpPoints.length; + } + + rdp(startIndex, endIndex, allPoints, rdpPoints, epsilon) { + const nextIndex = this.findFurthest( + allPoints, + startIndex, + endIndex, + epsilon + ); + if (nextIndex > 0) { + if (startIndex != nextIndex) { + this.rdp(startIndex, nextIndex, allPoints, rdpPoints, epsilon); + } + rdpPoints.push(allPoints[nextIndex]); + if (endIndex != nextIndex) { + this.rdp(nextIndex, endIndex, allPoints, rdpPoints, epsilon); + } + } + } + + findFurthest(points, a, b, epsilon) { + let recordDistance = -1; + const start = points[a]; + const end = points[b]; + let furthestIndex = -1; + for (let i = a + 1; i < b; i++) { + const currentPoint = points[i]; + const d = this.lineDist(currentPoint, start, end); + if (d > recordDistance) { + recordDistance = d; + furthestIndex = i; + } + } + if (recordDistance > epsilon) { + return furthestIndex; + } else { + return -1; + } + } + + lineDist(c, a, b) { + const norm = this.scalarProjection(c, a, b); + return dist(c.x, c.y, norm.x, norm.y); + } + + scalarProjection(p, a, b) { + const ap = { x: p.x - a.x, y: p.y - a.y }; + const ab = { x: b.x - a.x, y: b.y - a.y }; + const abMag = Math.sqrt(ab.x * ab.x + ab.y * ab.y); + ab.x /= abMag; + ab.y /= abMag; + const dot = ap.x * ab.x + ap.y * ab.y; + return { x: a.x + ab.x * dot, y: a.y + ab.y * dot }; + } +} + +const timeSeriesUtils = () => { + const instance = new TimeSeriesUtils(); + return instance; +}; + +export default timeSeriesUtils(); diff --git a/src/index.js b/src/index.js index 09416c1c..ddf7375c 100644 --- a/src/index.js +++ b/src/index.js @@ -7,6 +7,7 @@ import imageClassifier from "./ImageClassifier"; import soundClassifier from "./SoundClassifier"; import setBackend from "./utils/setBackend"; import bodySegmentation from "./BodySegmentation"; +import timeSeries from "./TimeSeries"; import communityStatement from "./utils/communityStatement"; import * as tf from "@tensorflow/tfjs"; import * as tfvis from "@tensorflow/tfjs-vis"; @@ -22,6 +23,7 @@ const withPreload = { neuralNetwork, sentiment, soundClassifier, + timeSeries, }; const ml5 = Object.assign({ p5Utils }, withPreload, { diff --git a/webpack.config.js b/webpack.config.js index ff90e03d..e9bab17b 100644 --- a/webpack.config.js +++ b/webpack.config.js @@ -48,9 +48,9 @@ const developmentConfig = { resolve: { fallback: { fs: false, - util: false + util: false, }, - } + }, }; const productionConfig = { @@ -77,9 +77,9 @@ const productionConfig = { resolve: { fallback: { fs: false, - util: false + util: false, }, - } + }, }; module.exports = function (env, args) {