Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] Llama example inference using Vulkan gives build error #2977

Open
asfarkTii opened this issue Oct 14, 2024 · 2 comments
Open

[Bug] Llama example inference using Vulkan gives build error #2977

asfarkTii opened this issue Oct 14, 2024 · 2 comments
Labels
bug Confirmed bugs

Comments

@asfarkTii
Copy link

asfarkTii commented Oct 14, 2024

🐛 Bug

I'm trying to replicate the LLaMA example method as mentioned in introduction documentation gives errors related to relax.build inspite of properly configured pipeline. Vulkan drivers are installed properly and mlc_llm detects vulkan device as well.

I have used below mentioned code:

`In [67]: print(tvm.vulkan().exist)
True

In [68]: print(tvm._ffi.base._LIB)
<CDLL '/home/abhilash/experimental/tvm/build/libtvm.so', handle aaaaf63aa350 at 0xffff998e0790>

In [69]: from mlc_llm import MLCEngine
    ...: 
    ...: # Create engine
    ...: model = "HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC"
    ...: engine = MLCEngine(model)
[2024-10-14 14:19:07] INFO auto_device.py:88: Not found device: cuda:0
[2024-10-14 14:19:10] INFO auto_device.py:88: Not found device: rocm:0
[2024-10-14 14:19:12] INFO auto_device.py:88: Not found device: metal:0
[2024-10-14 14:19:15] INFO auto_device.py:79: Found device: vulkan:0
[2024-10-14 14:19:15] INFO auto_device.py:79: Found device: vulkan:1
[2024-10-14 14:19:18] INFO auto_device.py:88: Not found device: opencl:0
[2024-10-14 14:19:18] INFO auto_device.py:35: Using device: vulkan:0
[2024-10-14 14:19:18] INFO download_cache.py:227: Downloading model from HuggingFace: HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC
[2024-10-14 14:19:18] INFO download_cache.py:29: MLC_DOWNLOAD_CACHE_POLICY = ON. Can be one of: ON, OFF, REDO, READONLY
[2024-10-14 14:19:18] INFO download_cache.py:166: Weights already downloaded: /home/abhilash/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC
[2024-10-14 14:19:18] INFO jit.py:43: MLC_JIT_POLICY = ON. Can be one of: ON, OFF, REDO, READONLY
[2024-10-14 14:19:18] INFO jit.py:118: Compiling using commands below:
[2024-10-14 14:19:18] INFO jit.py:119: /home/abhilash/tvm_env/bin/python3 -m mlc_llm compile /home/abhilash/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC --opt 'flashinfer=1;cublas_gemm=1;faster_transformer=0;cudagraph=1;cutlass=1;ipc_allreduce_strategy=NONE' --overrides '' --device vulkan:0 --output /tmp/tmp2l_b_1b3/lib.so
[2024-10-14 14:19:21] INFO auto_config.py:70: Found model configuration: /home/abhilash/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC/mlc-chat-config.json
[2024-10-14 14:19:21] INFO auto_target.py:91: Detecting target device: vulkan:0
[2024-10-14 14:19:21] INFO auto_target.py:93: Found target: {"thread_warp_size": runtime.BoxInt(1), "supports_float32": runtime.BoxBool(true), "supports_int16": runtime.BoxBool(true), "max_threads_per_block": runtime.BoxInt(1024), "supports_storage_buffer_storage_class": runtime.BoxBool(true), "supports_int8": runtime.BoxBool(true), "supports_8bit_buffer": runtime.BoxBool(true), "supports_int64": runtime.BoxBool(true), "max_num_threads": runtime.BoxInt(256), "kind": "vulkan", "tag": "", "max_shared_memory_per_block": runtime.BoxInt(49152), "supports_16bit_buffer": runtime.BoxBool(true), "supports_int32": runtime.BoxBool(true), "keys": ["vulkan", "gpu"], "supports_float16": runtime.BoxBool(true)}
[2024-10-14 14:19:21] INFO auto_target.py:110: Found host LLVM triple: aarch64-unknown-linux-gnu
[2024-10-14 14:19:21] INFO auto_target.py:111: Found host LLVM CPU: generic
[2024-10-14 14:19:21] INFO auto_config.py:154: Found model type: llama. Use `--model-type` to override.
Compiling with arguments:
  --config          LlamaConfig(hidden_size=4096, intermediate_size=14336, num_attention_heads=32, num_hidden_layers=32, rms_norm_eps=1e-05, vocab_size=128256, tie_word_embeddings=False, position_embedding_base=500000.0, rope_scaling=None, context_window_size=8192, prefill_chunk_size=8192, num_key_value_heads=8, head_dim=128, tensor_parallel_shards=1, pipeline_parallel_stages=1, max_batch_size=128, kwargs={})
  --quantization    GroupQuantize(name='q4f16_1', kind='group-quant', group_size=32, quantize_dtype='int4', storage_dtype='uint32', model_dtype='float16', linear_weight_layout='NK', quantize_embedding=True, quantize_final_fc=True, num_elem_per_storage=8, num_storage_per_group=4, max_int_value=7, tensor_parallel_shards=0)
  --model-type      llama
  --target          {"thread_warp_size": runtime.BoxInt(1), "host": {"mtriple": "aarch64-unknown-linux-gnu", "tag": "", "kind": "llvm", "mcpu": "generic", "keys": ["arm_cpu", "cpu"]}, "supports_float32": runtime.BoxBool(true), "supports_int16": runtime.BoxBool(true), "max_threads_per_block": runtime.BoxInt(1024), "supports_storage_buffer_storage_class": runtime.BoxBool(true), "supports_int8": runtime.BoxBool(true), "supports_8bit_buffer": runtime.BoxBool(true), "supports_int64": runtime.BoxBool(true), "max_num_threads": runtime.BoxInt(256), "kind": "vulkan", "tag": "", "max_shared_memory_per_block": runtime.BoxInt(49152), "supports_16bit_buffer": runtime.BoxBool(true), "supports_int32": runtime.BoxBool(true), "keys": ["vulkan", "gpu"], "supports_float16": runtime.BoxBool(true)}
  --opt             flashinfer=0;cublas_gemm=0;faster_transformer=0;cudagraph=0;cutlass=0;ipc_allreduce_strategy=NONE
  --system-lib-prefix ""
  --output          /tmp/tmp2l_b_1b3/lib.so
  --overrides       context_window_size=None;sliding_window_size=None;prefill_chunk_size=None;attention_sink_size=None;max_batch_size=None;tensor_parallel_shards=None;pipeline_parallel_stages=None
[2024-10-14 14:19:21] INFO compile.py:140: Creating model from: LlamaConfig(hidden_size=4096, intermediate_size=14336, num_attention_heads=32, num_hidden_layers=32, rms_norm_eps=1e-05, vocab_size=128256, tie_word_embeddings=False, position_embedding_base=500000.0, rope_scaling=None, context_window_size=8192, prefill_chunk_size=8192, num_key_value_heads=8, head_dim=128, tensor_parallel_shards=1, pipeline_parallel_stages=1, max_batch_size=128, kwargs={})
[2024-10-14 14:19:21] INFO compile.py:158: Exporting the model to TVM Unity compiler
[2024-10-14 14:19:34] INFO compile.py:164: Running optimizations using TVM Unity
[2024-10-14 14:19:34] INFO compile.py:185: Registering metadata: {'model_type': 'llama', 'quantization': 'q4f16_1', 'context_window_size': 8192, 'sliding_window_size': -1, 'attention_sink_size': -1, 'prefill_chunk_size': 8192, 'tensor_parallel_shards': 1, 'pipeline_parallel_stages': 1, 'kv_state_kind': 'kv_cache', 'max_batch_size': 128}
[2024-10-14 14:19:38] INFO pipeline.py:54: Running TVM Relax graph-level optimizations
[2024-10-14 14:19:54] INFO pipeline.py:54: Lowering to TVM TIR kernels
[2024-10-14 14:20:15] INFO pipeline.py:54: Running TVM TIR-level optimizations
[2024-10-14 14:21:02] INFO pipeline.py:54: Running TVM Dlight low-level optimizations
[2024-10-14 14:21:07] INFO pipeline.py:54: Lowering to VM bytecode
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `alloc_embedding_tensor`: 64.00 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `argsort_probs`: 0.00 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_decode`: 18.50 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_decode_to_last_hidden_states`: 19.50 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_prefill`: 1185.00 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_prefill_to_last_hidden_states`: 1248.00 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_select_last_hidden_states`: 1.00 MB
[2024-10-14 14:21:18] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_verify`: 1184.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_verify_to_last_hidden_states`: 1248.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `create_tir_paged_kv_cache`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `decode`: 0.14 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `decode_to_last_hidden_states`: 0.15 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `embed`: 64.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `gather_hidden_states`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `get_logits`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `multinomial_from_uniform`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `prefill`: 1184.01 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `prefill_to_last_hidden_states`: 1248.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `renormalize_by_top_p`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `sample_with_top_p`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `sampler_take_probs`: 0.01 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `sampler_verify_draft_tokens`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `scatter_hidden_states`: 0.00 MB
[2024-10-14 14:21:19] INFO estimate_memory_usage.py:58: [Memory usage] Function `softmax_with_temperature`: 0.00 MB
[2024-10-14 14:21:24] INFO pipeline.py:54: Compiling external modules
[2024-10-14 14:21:24] INFO pipeline.py:54: Compilation complete! Exporting to disk
Traceback (most recent call last):
  File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
    exec(code, run_globals)
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/__main__.py", line 64, in <module>
    main()
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/__main__.py", line 33, in main
    cli.main(sys.argv[2:])
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/cli/compile.py", line 129, in main
    compile(
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/interface/compile.py", line 243, in compile
    _compile(args, model_config)
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/interface/compile.py", line 188, in _compile
    args.build_func(
  File "/home/abhilash/Downloads/mlc-llm/python/mlc_llm/support/auto_target.py", line 311, in build
    relax.build(
  File "/home/abhilash/experimental/tvm/python/tvm/relax/vm_build.py", line 353, in build
    return _vmlink(
  File "/home/abhilash/experimental/tvm/python/tvm/relax/vm_build.py", line 249, in _vmlink
    lib = tvm.build(
  File "/home/abhilash/experimental/tvm/python/tvm/driver/build_module.py", line 297, in build
    rt_mod_host = _driver_ffi.tir_to_runtime(annotated_mods, target_host)
  File "/home/abhilash/experimental/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 245, in __call__
    raise_last_ffi_error()
  File "/home/abhilash/experimental/tvm/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
    raise py_err
tvm.error.InternalError: Traceback (most recent call last):
  236: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::runtime::Module (tvm::runtime::Map<tvm::Target, tvm::IRModule, void, void> const&, tvm::Target)>::AssignTypedLambda<tvm::__mk_TVM24::{lambda(tvm::runtime::Map<tvm::Target, tvm::IRModule, void, void> const&, tvm::Target)#1}>(tvm::__mk_TVM24::{lambda(tvm::runtime::Map<tvm::Target, tvm::IRModule, void, void> const&, tvm::Target)#1}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, tvm::runtime::TVMRetValue)
  235: tvm::TIRToRuntime(tvm::runtime::Map<tvm::Target, tvm::IRModule, void, void> const&, tvm::Target const&)
  234: tvm::codegen::Build(tvm::IRModule, tvm::Target)
  233: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::runtime::Module (tvm::IRModule, tvm::Target)>::AssignTypedLambda<tvm::codegen::__mk_TVM0::{lambda(tvm::IRModule, tvm::Target)#1}>(tvm::codegen::__mk_TVM0::{lambda(tvm::IRModule, tvm::Target)#1}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, tvm::runtime::TVMRetValue)
  232: tvm::codegen::BuildSPIRV(tvm::IRModule, tvm::Target)
  231: tvm::codegen::LowerToSPIRV[abi:cxx11](tvm::IRModule, tvm::Target)
  230: tvm::transform::Pass::operator()(tvm::IRModule) const
  229: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  228: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  227: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::tir::PrimFunc (tvm::tir::PrimFunc, tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::tir::transform::PointerValueTypeRewrite()::{lambda(tvm::tir::PrimFunc, tvm::IRModule, tvm::transform::PassContext)#1}>(tvm::tir::transform::PointerValueTypeRewrite()::{lambda(tvm::tir::PrimFunc, tvm::IRModule, tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
  226: tvm::tir::PointerValueTypeRewrite(tvm::tir::PrimFunc, bool, bool, bool, bool, bool, bool, bool, bool)
  225: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  224: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  223: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  222: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  221: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  220: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  219: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  218: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  217: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  216: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  215: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  214: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  213: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  212: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  211: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  210: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  209: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  208: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  207: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  206: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  205: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  204: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  203: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  202: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  201: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  200: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  199: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  198: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  197: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  196: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  195: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  194: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  193: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  192: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  191: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  190: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  189: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  188: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  187: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  186: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  185: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  184: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  183: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  182: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  181: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  180: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  179: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  178: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  177: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  176: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  175: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  174: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  173: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  172: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  171: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  170: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  169: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  168: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  167: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  166: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  165: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  164: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  163: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  162: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  161: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  160: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  159: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  158: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  157: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  156: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  155: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  154: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  153: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  152: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  151: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  150: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  149: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#8}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  148: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  147: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  146: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#2}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  145: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  144: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  143: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  142: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  141: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  140: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  139: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  138: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  137: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  136: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  135: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  134: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  133: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  132: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  131: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  130: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  129: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  128: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  127: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  126: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  125: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  124: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  123: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  122: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  121: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  120: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  119: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  118: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  117: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  116: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  115: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  114: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  113: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  112: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  111: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  110: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  109: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  108: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  107: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  106: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  105: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  104: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  103: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  102: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  101: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  100: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  99: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  98: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  97: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  96: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  95: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  94: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  93: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  92: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  91: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  90: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  89: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  88: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  87: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  86: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  85: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  84: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  83: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  82: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  81: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  80: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  79: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  78: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::AllocateNode const*)
  77: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  76: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  75: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#2}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  74: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  73: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  72: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#2}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  71: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  70: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  69: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#2}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  68: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  67: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  66: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#13}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  65: tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> tvm::tir::StmtMutator::Internal::MutateArray<tvm::tir::Stmt, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}>(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> const&, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  64: tvm::runtime::ObjectPtr<tvm::runtime::Object> tvm::runtime::Array<tvm::tir::Stmt, void>::MapHelper<tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}, tvm::tir::Stmt>(tvm::runtime::ObjectPtr<tvm::runtime::Object>, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  63: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  62: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  61: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#5}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  60: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  59: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  58: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#13}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  57: tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> tvm::tir::StmtMutator::Internal::MutateArray<tvm::tir::Stmt, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}>(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> const&, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  56: tvm::runtime::ObjectPtr<tvm::runtime::Object> tvm::runtime::Array<tvm::tir::Stmt, void>::MapHelper<tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}, tvm::tir::Stmt>(tvm::runtime::ObjectPtr<tvm::runtime::Object>, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  55: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  54: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  53: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#3}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  52: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  51: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  50: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#1}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  49: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::LetStmtNode const*)
  48: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  47: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#1}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  46: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::LetStmtNode const*)
  45: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  44: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#1}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  43: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::LetStmtNode const*)
  42: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  41: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#13}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  40: tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> tvm::tir::StmtMutator::Internal::MutateArray<tvm::tir::Stmt, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}>(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> const&, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  39: tvm::runtime::ObjectPtr<tvm::runtime::Object> tvm::runtime::Array<tvm::tir::Stmt, void>::MapHelper<tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}, tvm::tir::Stmt>(tvm::runtime::ObjectPtr<tvm::runtime::Object>, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  38: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  37: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  36: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#4}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  35: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  34: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  33: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#1}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  32: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::LetStmtNode const*)
  31: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  30: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#13}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  29: tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> tvm::tir::StmtMutator::Internal::MutateArray<tvm::tir::Stmt, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}>(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> const&, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  28: tvm::runtime::ObjectPtr<tvm::runtime::Object> tvm::runtime::Array<tvm::tir::Stmt, void>::MapHelper<tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}, tvm::tir::Stmt>(tvm::runtime::ObjectPtr<tvm::runtime::Object>, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  27: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  26: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  25: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#4}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  24: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  23: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  22: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#13}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  21: tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> tvm::tir::StmtMutator::Internal::MutateArray<tvm::tir::Stmt, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}>(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, std::enable_if<std::is_base_of<tvm::runtime::ObjectRef, tvm::tir::Stmt>::value, void>::type> const&, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  20: tvm::runtime::ObjectPtr<tvm::runtime::Object> tvm::runtime::Array<tvm::tir::Stmt, void>::MapHelper<tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1}, tvm::tir::Stmt>(tvm::runtime::ObjectPtr<tvm::runtime::Object>, tvm::tir::StmtMutator::Internal::Mutate(tvm::tir::StmtMutator*, tvm::runtime::Array<tvm::tir::Stmt, void> const&)::{lambda(tvm::tir::Stmt const&)#1})
  19: tvm::tir::StmtMutator::VisitStmt(tvm::tir::Stmt const&)
  18: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
  17: tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)#15}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::StmtFunctor<tvm::tir::Stmt (tvm::tir::Stmt const&)>*)
  16: tvm::tir::VectorTypeRewriter::VisitStmt_(tvm::tir::BufferStoreNode const*)
  15: tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  14: tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)#7}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)
  13: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  12: tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)#9}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)
  11: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  10: tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)#9}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)
  9: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  8: tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)#9}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)
  7: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  6: _ZZN3tvm3tir11ExprFunctorIFNS_8PrimExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRefEPS6_E28_4_FUNESA_SB
  5: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  4: _ZZN3tvm3tir11ExprFunctorIFNS_8PrimExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRefEPS6_E23_4_FUNESA_SB
  3: non-virtual thunk to tvm::tir::StmtExprMutator::VisitExpr(tvm::PrimExpr const&)
  2: tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)#3}::_FUN(tvm::runtime::ObjectRef const&, tvm::tir::ExprFunctor<tvm::PrimExpr (tvm::PrimExpr const&)>*)
  1: tvm::tir::VectorTypeRewriter::VisitExpr_(tvm::tir::BufferLoadNode const*)
  0: std::pair<tvm::tir::BufferLoad, int> tvm::tir::VectorTypeRewriter::VisitBufferAccess<tvm::tir::BufferLoad>(tvm::tir::BufferLoad)
  File "/home/abhilash/experimental/tvm/src/tir/transforms/storage_rewrite.cc", line 1494
InternalError: Check failed: (me->coeff == 0 || info.factor() % me->coeff == 0) is false: 
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[69], line 5
      3 # Create engine
      4 model = "HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC"
----> 5 engine = MLCEngine(model)

File ~/Downloads/mlc-llm/python/mlc_llm/serve/engine.py:1467, in MLCEngine.__init__(self, model, device, model_lib, mode, engine_config, enable_tracing)
   1457 def __init__(  # pylint: disable=too-many-arguments,too-many-locals
   1458     self,
   1459     model: str,
   (...)
   1465     enable_tracing: bool = False,
   1466 ) -> None:
-> 1467     super().__init__(
   1468         "sync",
   1469         model=model,
   1470         device=device,
   1471         model_lib=model_lib,
   1472         mode=mode,
   1473         engine_config=engine_config,
   1474         enable_tracing=enable_tracing,
   1475     )
   1476     self.chat = Chat(weakref.ref(self))
   1477     self.completions = Completion(weakref.ref(self))

File ~/Downloads/mlc-llm/python/mlc_llm/serve/engine_base.py:590, in MLCEngineBase.__init__(self, kind, model, device, model_lib, mode, engine_config, enable_tracing)
    584     device = detect_device(device)
    585 assert isinstance(device, Device)
    586 (
    587     model_args,
    588     model_config_paths,
    589     self.conv_template,
--> 590 ) = _process_model_args(models, device, engine_config)
    592 # - Load the raw model config into dict
    593 self.model_config_dicts = []

File ~/Downloads/mlc-llm/python/mlc_llm/serve/engine_base.py:171, in _process_model_args(models, device, engine_config)
    164         model_lib = jit.jit(
    165             model_path=model_path,
    166             overrides=model_compile_overrides,
    167             device=device,
    168         ).model_lib_path
    169     return str(model_path), model_lib
--> 171 model_args: List[Tuple[str, str]] = [_convert_model_info(model) for model in models]
    173 assert conversation is not None
    174 return model_args, config_file_paths, conversation

File ~/Downloads/mlc-llm/python/mlc_llm/serve/engine_base.py:171, in <listcomp>(.0)
    164         model_lib = jit.jit(
    165             model_path=model_path,
    166             overrides=model_compile_overrides,
    167             device=device,
    168         ).model_lib_path
    169     return str(model_path), model_lib
--> 171 model_args: List[Tuple[str, str]] = [_convert_model_info(model) for model in models]
    173 assert conversation is not None
    174 return model_args, config_file_paths, conversation

File ~/Downloads/mlc-llm/python/mlc_llm/serve/engine_base.py:164, in _process_model_args.<locals>._convert_model_info(model)
    152     from mlc_llm.interface import jit  # pylint: disable=import-outside-toplevel
    154     model_compile_overrides = {
    155         "context_window_size": engine_config.max_single_sequence_length,
    156         "prefill_chunk_size": engine_config.prefill_chunk_size,
   (...)
    161         "max_batch_size": engine_config.max_num_sequence,
    162     }
--> 164     model_lib = jit.jit(
    165         model_path=model_path,
    166         overrides=model_compile_overrides,
    167         device=device,
    168     ).model_lib_path
    169 return str(model_path), model_lib

File ~/Downloads/mlc-llm/python/mlc_llm/interface/jit.py:164, in jit(model_path, overrides, device, system_lib_prefix, skip_log_jit_policy)
    160 if MLC_JIT_POLICY == "READONLY":
    161     raise RuntimeError(
    162         "No cached model lib found, and JIT is disabled by MLC_JIT_POLICY=READONLY"
    163     )
--> 164 _run_jit(
    165     opt=hash_key["opt"],
    166     overrides=hash_key["overrides"],
    167     device=hash_key["device"],
    168     system_lib_prefix=system_lib_prefix,
    169     dst=str(dst),
    170 )
    171 return JITResult(str(dst), system_lib_prefix)

File ~/Downloads/mlc-llm/python/mlc_llm/interface/jit.py:124, in jit.<locals>._run_jit(opt, overrides, device, system_lib_prefix, dst)
    121 # note on windows: compilation can succeed but return code is still nonzero
    122 # check whether file exists instead
    123 if not os.path.isfile(dso_path):
--> 124     raise RuntimeError("Cannot find compilation output, compilation failed")
    125 shutil.move(dso_path, dst)
    126 logger.info("Using compiled model lib: %s", bold(dst))

RuntimeError: Cannot find compilation output, compilation failed

In [70]: 

`

Expected behavior

I would expect it to work straightforward. Let me know if you need more information and I can provide it.

Environment

  • Platform (e.g. WebGPU/Vulkan/IOS/Android/CUDA):Vulkan
  • Operating system (e.g. Ubuntu/Windows/MacOS/...):Ubuntu
  • Device (e.g. iPhone 12 Pro, PC+RTX 3090, ...)Jetson
  • How you installed MLC-LLM (conda, source): source
  • How you installed TVM-Unity (pip, source):source
  • Python version (e.g. 3.10):3.10
  • GPU driver version (if applicable):
  • CUDA/cuDNN version (if applicable):
  • TVM Unity Hash Tag (python -c "import tvm; print('\n'.join(f'{k}: {v}' for k, v in tvm.support.libinfo().items()))", applicable if you compile models):
 `In [70]: print('\n'.join(f'{k}: {v}' for k, v in tvm.support.libinfo().items()))
USE_NVTX: OFF
USE_GTEST: AUTO
SUMMARIZE: OFF
TVM_DEBUG_WITH_ABI_CHANGE: OFF
USE_IOS_RPC: OFF
USE_MSC: OFF
USE_ETHOSU: OFF
CUDA_VERSION: NOT-FOUND
USE_LIBBACKTRACE: AUTO
DLPACK_PATH: 3rdparty/dlpack/include
USE_TENSORRT_CODEGEN: OFF
USE_THRUST: OFF
USE_TARGET_ONNX: OFF
USE_AOT_EXECUTOR: ON
BUILD_DUMMY_LIBTVM: OFF
USE_CUDNN: OFF
USE_TENSORRT_RUNTIME: OFF
USE_ARM_COMPUTE_LIB_GRAPH_EXECUTOR: OFF
USE_CCACHE: AUTO
USE_ARM_COMPUTE_LIB: OFF
USE_CPP_RTVM: OFF
USE_OPENCL_GTEST: /path/to/opencl/gtest
TVM_LOG_BEFORE_THROW: OFF
USE_MKL: OFF
USE_PT_TVMDSOOP: OFF
MLIR_VERSION: NOT-FOUND
USE_CLML: OFF
USE_STACKVM_RUNTIME: OFF
USE_GRAPH_EXECUTOR_CUDA_GRAPH: OFF
ROCM_PATH: /opt/rocm
USE_DNNL: OFF
USE_MSCCL: OFF
USE_NNAPI_RUNTIME: OFF
USE_VITIS_AI: OFF
USE_MLIR: OFF
USE_RCCL: OFF
USE_LLVM: /usr/lib/llvm-14/bin/llvm-config
USE_VERILATOR: OFF
USE_TF_TVMDSOOP: OFF
USE_THREADS: ON
USE_MSVC_MT: OFF
BACKTRACE_ON_SEGFAULT: OFF
USE_GRAPH_EXECUTOR: ON
USE_NCCL: OFF
USE_ROCBLAS: OFF
GIT_COMMIT_HASH: ff0b07ba6f225128fb030ebb0f45704d44812f00
USE_VULKAN: ON
USE_RUST_EXT: OFF
USE_CUTLASS: OFF
USE_CPP_RPC: OFF
USE_HEXAGON: OFF
USE_CUSTOM_LOGGING: OFF
USE_UMA: OFF
USE_FALLBACK_STL_MAP: OFF
USE_SORT: ON
USE_RTTI: ON
GIT_COMMIT_TIME: 2024-10-06 21:54:13 +0800
USE_HIPBLAS: OFF
USE_HEXAGON_SDK: /path/to/sdk
USE_BLAS: none
USE_ETHOSN: OFF
USE_LIBTORCH: OFF
USE_RANDOM: ON
USE_CUDA: OFF
USE_COREML: OFF
USE_AMX: OFF
BUILD_STATIC_RUNTIME: OFF
USE_CMSISNN: OFF
USE_KHRONOS_SPIRV: ON
USE_CLML_GRAPH_EXECUTOR: OFF
USE_TFLITE: OFF
USE_HEXAGON_GTEST: /path/to/hexagon/gtest
PICOJSON_PATH: 3rdparty/picojson
USE_OPENCL_ENABLE_HOST_PTR: OFF
INSTALL_DEV: OFF
USE_PROFILER: ON
USE_NNPACK: OFF
LLVM_VERSION: 14.0.0
USE_MRVL: OFF
USE_OPENCL: OFF
COMPILER_RT_PATH: 3rdparty/compiler-rt
USE_NNAPI_CODEGEN: OFF
RANG_PATH: 3rdparty/rang/include
USE_SPIRV_KHR_INTEGER_DOT_PRODUCT: ON
USE_OPENMP: none
USE_BNNS: OFF
USE_FLASHINFER: OFF
USE_CUBLAS: OFF
USE_METAL: OFF
USE_MICRO_STANDALONE_RUNTIME: OFF
USE_HEXAGON_EXTERNAL_LIBS: OFF
USE_ALTERNATIVE_LINKER: AUTO
USE_BYODT_POSIT: OFF
USE_NVSHMEM: OFF
USE_HEXAGON_RPC: OFF
USE_MICRO: OFF
DMLC_PATH: 3rdparty/dmlc-core/include
INDEX_DEFAULT_I64: ON
USE_RELAY_DEBUG: OFF
USE_RPC: ON
USE_TENSORFLOW_PATH: none
TVM_CLML_VERSION: 
USE_MIOPEN: OFF
USE_ROCM: OFF
USE_PAPI: OFF
USE_CURAND: OFF
TVM_CXX_COMPILER_PATH: /usr/bin/c++
HIDE_PRIVATE_SYMBOLS: OFF

In [71]: `

  • Any other relevant information:

Additional context

@asfarkTii asfarkTii added the bug Confirmed bugs label Oct 14, 2024
@MasterJH5574
Copy link
Member

Hi @asfarkTii thanks for reporting. May I ask the TVM commit hash and MLC commit hash of your local code base? We tried but were not able to reproduce this issue:

~/W/mlc-llm workspace *2 ?4 ❯ python -m mlc_llm chat HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC --device vulkan
[2024-10-14 17:47:34] INFO auto_device.py:79: Found device: vulkan:0
[2024-10-14 17:47:34] INFO auto_device.py:79: Found device: vulkan:1
[2024-10-14 17:47:34] INFO auto_device.py:79: Found device: vulkan:2
[2024-10-14 17:47:34] INFO download_cache.py:227: Downloading model from HuggingFace: HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC
[2024-10-14 17:47:34] INFO download_cache.py:29: MLC_DOWNLOAD_CACHE_POLICY = ON. Can be one of: ON, OFF, REDO, READONLY
[2024-10-14 17:47:34] INFO download_cache.py:166: Weights already downloaded: /home/ruihang/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC
[2024-10-14 17:47:34] INFO jit.py:43: MLC_JIT_POLICY = ON. Can be one of: ON, OFF, REDO, READONLY
[2024-10-14 17:47:34] INFO jit.py:118: Compiling using commands below:
[2024-10-14 17:47:34] INFO jit.py:119: /home/ruihang/Workspace/miniconda3/envs/python311/bin/python -m mlc_llm compile /home/ruihang/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC --opt 'flashinfer=1;cublas_gemm=1;faster_transformer=0;cudagraph=1;cutlass=1;ipc_allreduce_strategy=NONE' --overrides '' --device vulkan:0 --output /tmp/tmpega3e9qz/lib.so
[2024-10-14 17:47:35] INFO auto_config.py:70: Found model configuration: /home/ruihang/.cache/mlc_llm/model_weights/hf/mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC/mlc-chat-config.json
[2024-10-14 17:47:35] INFO auto_target.py:91: Detecting target device: vulkan:0
[2024-10-14 17:47:36] INFO auto_target.py:93: Found target: {"thread_warp_size": runtime.BoxInt(1), "supports_float32": runtime.BoxBool(true), "supports_int16": runtime.BoxBool(true), "max_threads_per_block": runtime.BoxInt(1024), "supports_storage_buffer_storage_class": runtime.BoxBool(true), "supports_int8": runtime.BoxBool(true), "supports_8bit_buffer": runtime.BoxBool(true), "supports_int64": runtime.BoxBool(true), "max_num_threads": runtime.BoxInt(256), "kind": "vulkan", "tag": "", "max_shared_memory_per_block": runtime.BoxInt(49152), "supports_16bit_buffer": runtime.BoxBool(true), "supports_int32": runtime.BoxBool(true), "keys": ["vulkan", "gpu"], "supports_float16": runtime.BoxBool(true)}
[2024-10-14 17:47:36] INFO auto_target.py:110: Found host LLVM triple: x86_64-pc-linux-gnu
[2024-10-14 17:47:36] INFO auto_target.py:111: Found host LLVM CPU: znver3
[2024-10-14 17:47:36] INFO auto_config.py:154: Found model type: llama. Use `--model-type` to override.
Compiling with arguments:
  --config          LlamaConfig(hidden_size=4096, intermediate_size=14336, num_attention_heads=32, num_hidden_layers=32, rms_norm_eps=1e-05, vocab_size=128256, tie_word_embeddings=False, position_embedding_base=500000.0, rope_scaling=None, context_window_size=8192, prefill_chunk_size=8192, num_key_value_heads=8, head_dim=128, tensor_parallel_shards=1, pipeline_parallel_stages=1, max_batch_size=128, kwargs={})
  --quantization    GroupQuantize(name='q4f16_1', kind='group-quant', group_size=32, quantize_dtype='int4', storage_dtype='uint32', model_dtype='float16', linear_weight_layout='NK', quantize_embedding=True, quantize_final_fc=True, num_elem_per_storage=8, num_storage_per_group=4, max_int_value=7, tensor_parallel_shards=0)
  --model-type      llama
  --target          {"thread_warp_size": runtime.BoxInt(1), "host": {"mtriple": "x86_64-pc-linux-gnu", "tag": "", "kind": "llvm", "mcpu": "znver3", "keys": ["cpu"]}, "supports_float32": runtime.BoxBool(true), "supports_int16": runtime.BoxBool(true), "max_threads_per_block": runtime.BoxInt(1024), "supports_storage_buffer_storage_class": runtime.BoxBool(true), "supports_int8": runtime.BoxBool(true), "supports_8bit_buffer": runtime.BoxBool(true), "supports_int64": runtime.BoxBool(true), "max_num_threads": runtime.BoxInt(256), "kind": "vulkan", "tag": "", "max_shared_memory_per_block": runtime.BoxInt(49152), "supports_16bit_buffer": runtime.BoxBool(true), "supports_int32": runtime.BoxBool(true), "keys": ["vulkan", "gpu"], "supports_float16": runtime.BoxBool(true)}
  --opt             flashinfer=0;cublas_gemm=0;faster_transformer=0;cudagraph=0;cutlass=0;ipc_allreduce_strategy=NONE
  --system-lib-prefix ""
  --output          /tmp/tmpega3e9qz/lib.so
  --overrides       context_window_size=None;sliding_window_size=None;prefill_chunk_size=None;attention_sink_size=None;max_batch_size=None;tensor_parallel_shards=None;pipeline_parallel_stages=None
[2024-10-14 17:47:36] INFO compile.py:140: Creating model from: LlamaConfig(hidden_size=4096, intermediate_size=14336, num_attention_heads=32, num_hidden_layers=32, rms_norm_eps=1e-05, vocab_size=128256, tie_word_embeddings=False, position_embedding_base=500000.0, rope_scaling=None, context_window_size=8192, prefill_chunk_size=8192, num_key_value_heads=8, head_dim=128, tensor_parallel_shards=1, pipeline_parallel_stages=1, max_batch_size=128, kwargs={})
[2024-10-14 17:47:36] INFO compile.py:158: Exporting the model to TVM Unity compiler
[2024-10-14 17:47:39] INFO compile.py:164: Running optimizations using TVM Unity
[2024-10-14 17:47:39] INFO compile.py:185: Registering metadata: {'model_type': 'llama', 'quantization': 'q4f16_1', 'context_window_size': 8192, 'sliding_window_size': -1, 'attention_sink_size': -1, 'prefill_chunk_size': 8192, 'tensor_parallel_shards': 1, 'pipeline_parallel_stages': 1, 'kv_state_kind': 'kv_cache', 'max_batch_size': 128}
[2024-10-14 17:47:40] INFO pipeline.py:54: Running TVM Relax graph-level optimizations
[2024-10-14 17:47:42] INFO pipeline.py:54: Lowering to TVM TIR kernels
[2024-10-14 17:47:45] INFO pipeline.py:54: Running TVM TIR-level optimizations
[2024-10-14 17:47:53] INFO pipeline.py:54: Running TVM Dlight low-level optimizations
[2024-10-14 17:47:54] INFO pipeline.py:54: Lowering to VM bytecode
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `alloc_embedding_tensor`: 64.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `argsort_probs`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_decode`: 18.50 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_decode_to_last_hidden_states`: 19.50 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_prefill`: 1185.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_prefill_to_last_hidden_states`: 1248.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_select_last_hidden_states`: 1.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_verify`: 1184.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `batch_verify_to_last_hidden_states`: 1248.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `create_tir_paged_kv_cache`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `decode`: 0.14 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `decode_to_last_hidden_states`: 0.15 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `embed`: 64.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `gather_hidden_states`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `get_logits`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `multinomial_from_uniform`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `prefill`: 1184.01 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `prefill_to_last_hidden_states`: 1248.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `renormalize_by_top_p`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `sample_with_top_p`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `sampler_take_probs`: 0.01 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `sampler_verify_draft_tokens`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `scatter_hidden_states`: 0.00 MB
[2024-10-14 17:47:56] INFO estimate_memory_usage.py:58: [Memory usage] Function `softmax_with_temperature`: 0.00 MB
[2024-10-14 17:47:57] INFO pipeline.py:54: Compiling external modules
[2024-10-14 17:47:57] INFO pipeline.py:54: Compilation complete! Exporting to disk
[2024-10-14 17:48:01] INFO model_metadata.py:95: Total memory usage without KV cache:: 5556.13 MB (Parameters: 4308.13 MB. Temporary buffer: 1248.00 MB)
[2024-10-14 17:48:01] INFO model_metadata.py:103: To reduce memory usage, tweak `prefill_chunk_size`, `context_window_size` and `sliding_window_size`
[2024-10-14 17:48:01] INFO compile.py:207: Generated: /tmp/tmpega3e9qz/lib.so
[2024-10-14 17:48:02] INFO jit.py:126: Using compiled model lib: /home/ruihang/.cache/mlc_llm/model_lib/784c5e745ea250622aff96e8ea47aa53.so
[17:48:03] /home/ruihang/Workspace/mlc-llm/cpp/serve/config.cc:688: Under mode "local", max batch size will be set to 4, max KV cache token capacity will be set to 8192, prefill chunk size will be set to 8192. 
[17:48:03] /home/ruihang/Workspace/mlc-llm/cpp/serve/config.cc:688: Under mode "interactive", max batch size will be set to 1, max KV cache token capacity will be set to 8192, prefill chunk size will be set to 8192. 
[17:48:03] /home/ruihang/Workspace/mlc-llm/cpp/serve/config.cc:688: Under mode "server", max batch size will be set to 128, max KV cache token capacity will be set to 107868, prefill chunk size will be set to 8192. 
[17:48:03] /home/ruihang/Workspace/mlc-llm/cpp/serve/config.cc:769: The actual engine mode is "interactive". So max batch size is 1, max KV cache token capacity is 8192, prefill chunk size is 8192.
[17:48:03] /home/ruihang/Workspace/mlc-llm/cpp/serve/config.cc:774: Estimated total single GPU memory usage: 8168.217 MB (Parameters: 4308.133 MB. KVCache: 1234.072 MB. Temporary buffer: 2626.011 MB). The actual usage might be slightly larger than the estimated number.
You can use the following special commands:
  /help               print the special commands
  /exit               quit the cli
  /stats              print out stats of last request (token/sec)
  /metrics            print out full engine metrics
  /reset              restart a fresh chat
  /set [overrides]    override settings in the generation config. For example,
                      `/set temperature=0.5;top_p=0.8;seed=23;max_tokens=100;stop=str1,str2`
                      Note: Separate stop words in the `stop` option with commas (,).
  Multi-line input: Use escape+enter to start a new line.

>>> Hi
Hi! It's nice to meet you. Is there something I can help you with or would you like to chat for a bit? I'm here to listen and assist if I can.
>>>

@asfarkTii
Copy link
Author

I see. I'm running on Jetson which is arm platform. Here's the hash of the commit:
TVM:
ff0b07ba6f225128fb030ebb0f45704d44812f00
MLC-LLM:
f51c0f64ca3dbc29d9e8495fb75a227e5a63d70e

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Confirmed bugs
Projects
None yet
Development

No branches or pull requests

2 participants