Skip to content

Commit 15b7e6c

Browse files
committed
naming according to styleguide
1 parent 6befed2 commit 15b7e6c

File tree

1 file changed

+15
-16
lines changed

1 file changed

+15
-16
lines changed

R/infillOptFocus.R

+15-16
Original file line numberDiff line numberDiff line change
@@ -9,12 +9,11 @@
99
infillOptFocus = function(infill.crit, models, control, par.set, opt.path, design, iter, ...) {
1010
global.y = Inf
1111

12-
discreteVectorPars = filterParams(par.set, type = c("discretevector", "logicalvector"))
12+
discrete.vector.pars = filterParams(par.set, type = c("discretevector", "logicalvector"))
1313

14-
allRequirements = extractSubList(par.set$pars, "requires", simplify = FALSE)
15-
allRequirementVars = unique(unlist(lapply(allRequirements, all.vars)))
16-
forbiddenRequirementVars = getParamIds(discreteVectorPars)
17-
if (any(allRequirementVars %in% forbiddenRequirementVars)) {
14+
all.requirements = extractSubList(par.set$pars, "requires", simplify = FALSE)
15+
all.requirement.vars = unique(unlist(lapply(all.requirements, all.vars)))
16+
if (any(all.requirement.vars %in% getParamIds(discrete.vector.pars))) {
1817
stop("Cannot do focus search when some variables have requirements that depend on discrete or logical vector parameters.")
1918
}
2019

@@ -27,20 +26,20 @@ infillOptFocus = function(infill.crit, models, control, par.set, opt.path, desig
2726
# Handle discrete vectors (and logical vectors):
2827
# The problem is that for discrete vectors, we can't adjust the range dimension-wise.
2928
# Instead we store the range of each discrete vectorparameter dimension in the list of named characters
30-
# `discreteVectorMapping`. In each iteration a random value (that does not contain
29+
# `discrete.vector.mapping`. In each iteration a random value (that does not contain
3130
# the optimum) is dropped from each vector on this list. The $values of the parameters in the parameterset also
3231
# need to be modified to reflect the reduced range: from them, always the last value is dropped.
33-
# Then `discreteVectorMapping` is a mapping that maps, for each discrete vector param dimension
32+
# Then `discrete.vector.mapping` is a mapping that maps, for each discrete vector param dimension
3433
# with originally n values, from the sampled value (levels 1 to n - #(dropped levels)) to the acutal levels with
3534
# random dropouts.
3635
#
3736
# Since the requirements of the param set are queried while generating the design, this breaks if
3837
# there are requirements depending on discrete vector parameters.
39-
discreteVectorMapping = lapply(discreteVectorPars$pars,
38+
discrete.vector.mapping = lapply(discrete.vector.pars$pars,
4039
function(param) rep(list(setNames(names(param$values), names(param$values))), param$len))
41-
discreteVectorMapping = unlist(discreteVectorMapping, recursive=FALSE)
42-
if (!isEmpty(discreteVectorPars)) {
43-
names(discreteVectorMapping) = getParamIds(discreteVectorPars, with.nr = TRUE, repeated = TRUE)
40+
discrete.vector.mapping = unlist(discrete.vector.mapping, recursive=FALSE)
41+
if (!isEmpty(discrete.vector.pars)) {
42+
names(discrete.vector.mapping) = getParamIds(discrete.vector.pars, with.nr = TRUE, repeated = TRUE)
4443
}
4544

4645

@@ -53,8 +52,8 @@ infillOptFocus = function(infill.crit, models, control, par.set, opt.path, desig
5352
newdesign = convertDataFrameCols(newdesign, ints.as.num = TRUE, logicals.as.factor = TRUE)
5453

5554
# handle discrete vectors
56-
for (dfindex in names(discreteVectorMapping)) {
57-
mapping = discreteVectorMapping[[dfindex]]
55+
for (dfindex in names(discrete.vector.mapping)) {
56+
mapping = discrete.vector.mapping[[dfindex]]
5857
levels(newdesign[[dfindex]]) = mapping[levels(newdesign[[dfindex]])]
5958
}
6059

@@ -102,20 +101,20 @@ infillOptFocus = function(infill.crit, models, control, par.set, opt.path, desig
102101
par$values[[to.del]] = NULL
103102
} else {
104103
# we remove the last element of par$values and a random element for
105-
# each dimension in discreteVectorMapping.
104+
# each dimension in discrete.vector.mapping.
106105
par$values = par$values[-length(par$values)]
107106
if (par$type != "logicalvector") {
108107
# for discretevectorparam val would be a list; convert to character vector
109108
val = names(val)
110109
}
111110
for (dimnum in seq_len(par$len)) {
112111
dfindex = paste0(par$id, dimnum)
113-
newmap = val.names = discreteVectorMapping[[dfindex]]
112+
newmap = val.names = discrete.vector.mapping[[dfindex]]
114113
val.names = val.names[val.names != val[dimnum]]
115114
to.del = sample(val.names, 1)
116115
newmap = newmap[newmap != to.del]
117116
names(newmap) = names(par$values)
118-
discreteVectorMapping[[dfindex]] <<- newmap
117+
discrete.vector.mapping[[dfindex]] <<- newmap
119118
}
120119
}
121120
}

0 commit comments

Comments
 (0)