-
Notifications
You must be signed in to change notification settings - Fork 1
/
solver.c
451 lines (366 loc) · 12.6 KB
/
solver.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#include <math.h>
#include <omp.h>
#include "domain.h"
#include "assemble.h"
#include "solver.h"
#include "matrix.h"
#include "output.h"
#include "error.h"
#include "fep.h"
double _triangular_local_stiffness_matrix[][3] = {{1.0, -0.5, -0.5},
{-0.5, 0.5, 0.0},
{-0.5, 0.0, 0.5}};
double _triangular_local_mass_matrix[][3] = {{1.0/12, 1.0/24, 1.0/24},
{1.0/24, 1.0/12, 1.0/24},
{1.0/24, 1.0/24, 1.0/12}};
static int is_converged(domain* cartesian_domain)
{
int i;
int converged = 1;
#define CSDN (cartesian_domain->subdomain_count_x)
#define CSD (cartesian_domain->subdomains)
for(i = 0; i < CSDN; i++)
{
converged &= (CSD[i].converged != 0);
}
#undef CSD
#undef CSDN
return converged;
}
static double smooth_solution_and_get_norm(domain* cartesian_domain, int idx)
{
int i, j, count;
double true_norm;
double deviation_norm;
double current_value, ghost_value, new_value;
double weight;
#define CSDN (cartesian_domain->subdomain_count_x)
#define CSD (cartesian_domain->subdomains)
true_norm = 0.0;
deviation_norm = 0.0;
if(idx < CSDN - 1)
{
count = 0;
for(i = 0; i < CSD[idx].dimY; i++)
{
for(j = CSD[idx].dimX - CSD[idx].overlap; j < CSD[idx].dimX; j++)
{
weight = (CSD[idx].dimX - j - 1)/(1.0 * CSD[idx].overlap - 1);
current_value = CSD[idx].subdomain_solution.elements[i*CSD[idx].dimX + j];
ghost_value = CSD[idx].ghost_subdomain_right.elements[count];
new_value = (weight * current_value) + ((1.0 - weight) * ghost_value);
deviation_norm = deviation_norm + pow((new_value - current_value), 2);
true_norm = true_norm + pow(new_value, 2);
CSD[idx].subdomain_solution.elements[i*CSD[idx].dimX + j] = new_value;
count++;
}
}
}
else
{
return 0.0;
}
#undef CSD
#undef CSDN
return sqrt(deviation_norm/true_norm);
}
int ellipticsolver(domain* cartesian_domain, elliptic_solver_parameters solver_parameters)
{
int Nx, Ny, Nv;
int i, itrCount, diag_count;
vector* F_array;
sparse_matrix* K_array;
int ** vector_sizes_array;
int ** diagonal_offsets_array;
#define CSDN (cartesian_domain->subdomain_count_x)
#define CSD (cartesian_domain->subdomains)
#define CG (cartesian_domain->cartesian_grid)
// Create an array of F vectors and K arrays
F_array = calloc(CSDN, sizeof(vector));
K_array = calloc(CSDN, sizeof(sparse_matrix));
vector_sizes_array = calloc(CSDN, sizeof(int*));
diagonal_offsets_array = calloc(CSDN, sizeof(int*));
diag_count = 7;
for(i = 0; i < CSDN; i++)
{
vector_sizes_array[i] = calloc(diag_count, sizeof(int));
diagonal_offsets_array[i] = calloc(diag_count, sizeof(int));
}
#pragma omp parallel for private(i, Nx, Ny, Nv)
for(i = 0 ; i < CSDN; i++)
{
Nx = CSD[i].dimX;
Ny = CSD[i].dimY;
Nv = Nx * Ny;
vector_sizes_array[i][0] = Nv - Nx - 1;
vector_sizes_array[i][1] = Nv - Nx;
vector_sizes_array[i][2] = Nv - 1;
vector_sizes_array[i][3] = Nv;
vector_sizes_array[i][4] = Nv - 1;
vector_sizes_array[i][5] = Nv - Nx;
vector_sizes_array[i][6] = Nv - Nx - 1;
diagonal_offsets_array[i][0] = - Nx - 1;
diagonal_offsets_array[i][1] = - Nx;
diagonal_offsets_array[i][2] = - 1;
diagonal_offsets_array[i][3] = 0;
diagonal_offsets_array[i][4] = 1;
diagonal_offsets_array[i][5] = Nx;
diagonal_offsets_array[i][6] = Nx + 1;
// Assemble the K matrix
assemble_global_matrix(cartesian_domain, i, _triangular_local_stiffness_matrix, &(K_array[i]),
vector_sizes_array[i], diagonal_offsets_array[i], diag_count, 1.0);
// Assemble the load vector_init
assemble_global_load_vector(cartesian_domain, i, &(F_array[i]));
}
itrCount = 0;
do
{
printf("Elliptic Solver: Iteration count %d\n", itrCount);
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
// Apply the boundary condition on K and F
// TODO: This is redundant operation, F is fixed
apply_boundary_operator_on_vector(cartesian_domain, i, &(F_array[i]));
// Mark the subdomain as not converged
CSD[i].converged = 0;
// Solve each subdomain
mgmres(&(K_array[i]), &(CSD[i].subdomain_solution), &(F_array[i]), solver_parameters.mgmresParameters);
// Send information left
copy_overlap_to_adjacent_neighbours_ghost(cartesian_domain, i, -1);
}
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++) {
// Smooth and compute the norm
double rel_error = smooth_solution_and_get_norm(cartesian_domain, i);
// Check for tolerance and mark as converged if converged
if(rel_error < solver_parameters.solverRelTol)
{
CSD[i].converged = 1;
}
// Send information right
copy_overlap_to_adjacent_neighbours_ghost(cartesian_domain, i, 1);
}
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++) {
// Copy information from the left ghost cell of the current subdomain
copy_from_my_ghost_cell(cartesian_domain, i, -1);
// Write to file
solver_parameters.outputProcessor(cartesian_domain, i, itrCount, write_output_for_vertex);
}
if(++itrCount > solver_parameters.maxItr)
{
warn("The elliptic solver has exceeded the number of maximum iterations");
break;
}
} while(!is_converged(cartesian_domain));
if(K_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
sparse_matrix_free(&(K_array[i]));
}
free(K_array);
}
if(F_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
vector_free(&(F_array[i]));
}
free(F_array);
}
if(vector_sizes_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
free(vector_sizes_array[i]);
}
free(vector_sizes_array);
}
if(diagonal_offsets_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
free(diagonal_offsets_array[i]);
}
free(diagonal_offsets_array);
}
#undef CSD
#undef CSDN
#undef CG
return 0;
}
int parabolicsolver(domain* cartesian_domain, parabolic_solver_parameters solver_parameters)
{
int i,j, pseudoItrCount, timeItrCount;
int diag_count, Nx, Ny, Nv;
vector* F_array;
sparse_matrix* LHS_array;
sparse_matrix* RHS_array;
double h, dt, x, y;
double lhs[3][3], rhs[3][3];
int ** vector_sizes_array;
int ** diagonal_offsets_array;
#define CSDN (cartesian_domain->subdomain_count_x)
#define CSD (cartesian_domain->subdomains)
#define CG (cartesian_domain->cartesian_grid)
F_array = calloc(CSDN, sizeof(vector));
LHS_array = calloc(CSDN, sizeof(sparse_matrix));
RHS_array = calloc(CSDN, sizeof(sparse_matrix));
vector_sizes_array = calloc(CSDN, sizeof(int*));
diagonal_offsets_array = calloc(CSDN, sizeof(int*));
dt = solver_parameters.timeSpan/solver_parameters.numTimeSteps;
h = CG->h;
for (i=0; i<3; i++)
{
for(j=0; j<3; j++)
{
lhs[i][j] = h*h*_triangular_local_mass_matrix[i][j] + dt/2 * _triangular_local_stiffness_matrix[i][j];
rhs[i][j] = h*h*_triangular_local_mass_matrix[i][j] - dt/2 * _triangular_local_stiffness_matrix[i][j];
}
}
diag_count = 7;
for(i = 0; i < CSDN; i++)
{
vector_sizes_array[i] = calloc(diag_count, sizeof(int));
diagonal_offsets_array[i] = calloc(diag_count, sizeof(int));
}
#pragma omp parallel for private(i, Nx, Ny, Nv, x, y, j)
for(i = 0 ; i < CSDN; i++)
{
Nx = CSD[i].dimX;
Ny = CSD[i].dimY;
Nv = Nx * Ny;
for(j = 0; j < Nx * Ny; j++)
{
x = CSD[i].subdomain_vertices[j]->x;
y = CSD[i].subdomain_vertices[j]->y;
CSD[i].subdomain_solution.elements[j] = initial_value(x, y);
}
vector_sizes_array[i][0] = Nv - Nx - 1;
vector_sizes_array[i][1] = Nv - Nx;
vector_sizes_array[i][2] = Nv - 1;
vector_sizes_array[i][3] = Nv;
vector_sizes_array[i][4] = Nv - 1;
vector_sizes_array[i][5] = Nv - Nx;
vector_sizes_array[i][6] = Nv - Nx - 1;
diagonal_offsets_array[i][0] = - Nx - 1;
diagonal_offsets_array[i][1] = - Nx;
diagonal_offsets_array[i][2] = - 1;
diagonal_offsets_array[i][3] = 0;
diagonal_offsets_array[i][4] = 1;
diagonal_offsets_array[i][5] = Nx;
diagonal_offsets_array[i][6] = Nx + 1;
// Assemble the K and M matrix toghether in LHS_array and RHS_array
// Assemble the load vector_init
assemble_global_matrix(cartesian_domain, i, lhs, &(LHS_array[i]),
vector_sizes_array[i], diagonal_offsets_array[i], diag_count, 1.0);
assemble_global_matrix(cartesian_domain, i, rhs, &(RHS_array[i]),
vector_sizes_array[i], diagonal_offsets_array[i], diag_count, 1.0);
vector_init(&(F_array[i]),Nv);
sparse_matrix_vector_multiply(&(RHS_array[i]), &(CSD[i].subdomain_solution), &(F_array[i]));
}
for (timeItrCount=0; timeItrCount<solver_parameters.numTimeSteps; timeItrCount++)
{
printf("Unsteady Elliptic Solver: Time Iteration count %d\n", timeItrCount);
pseudoItrCount = 0;
do
{
printf("Unsteady Elliptic Solver: Inner Iteration count %d\n", pseudoItrCount);
#pragma omp parallel for private(i)
for (i = 0; i < CSDN; i++) {
//?? Apply the boundary condition F
// Mark the subdomain as not converged
CSD[i].converged = 0;
// Apply boundary op on solution
apply_boundary_operator_on_vector(cartesian_domain, i, &(F_array[i]));
// Solve each subdomain
mgmres(&(LHS_array[i]), &(CSD[i].subdomain_solution), &(F_array[i]), solver_parameters.mgmresParameters);
// Send information left
copy_overlap_to_adjacent_neighbours_ghost(cartesian_domain, i, -1);
}
#pragma omp parallel for private(i)
for (i = 0; i < CSDN; i++) {
// Smooth and compute the norm
double rel_error = smooth_solution_and_get_norm(cartesian_domain, i);
// Check for tolerance and mark as converged if converged
if (rel_error < solver_parameters.solverRelTol) {
CSD[i].converged = 1;
}
// Send information right
copy_overlap_to_adjacent_neighbours_ghost(cartesian_domain, i, 1);
}
#pragma omp parallel for private(i)
for (i = 0; i < CSDN; i++) {
// Copy information from the left ghost cell of the current subdomain
copy_from_my_ghost_cell(cartesian_domain, i, -1);
}
if (++pseudoItrCount > solver_parameters.maxItr) {
printf("Elliptic solver did not converge at T= %2.2f\n", timeItrCount * dt);
break;
}
} while (!is_converged(cartesian_domain));
#pragma omp parallel for private(i)
for (i = 0; i < CSDN; i++) {
// Write to file
solver_parameters.outputProcessor(cartesian_domain, i, timeItrCount, write_output_for_vertex);
// vn = RHS_array*Cn;
sparse_matrix_vector_multiply(&(RHS_array[i]), &(CSD[i].subdomain_solution), &(F_array[i]));
}
}
// Deallocation
if(LHS_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
sparse_matrix_free(&(LHS_array[i]));
}
free(LHS_array);
}
if(RHS_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
sparse_matrix_free(&(RHS_array[i]));
}
free(RHS_array);
}
if(F_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
vector_free(&(F_array[i]));
}
free(F_array);
}
if(vector_sizes_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
free(vector_sizes_array[i]);
}
free(vector_sizes_array);
}
if(diagonal_offsets_array != NULL)
{
#pragma omp parallel for private(i)
for(i = 0 ; i < CSDN; i++)
{
free(diagonal_offsets_array[i]);
}
free(diagonal_offsets_array);
}
#undef CSD
#undef CSDN
#undef CG
return 0;
}