-
Notifications
You must be signed in to change notification settings - Fork 20
/
turbo_art.py
138 lines (111 loc) · 3.99 KB
/
turbo_art.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from pathlib import Path
from fastapi import FastAPI, File, Form, Response, UploadFile
from fastapi.staticfiles import StaticFiles
from modal import Image, Mount, App, asgi_app, build, enter, gpu, web_endpoint
app = App("stable-diffusion-xl-turbo")
web_image = Image.debian_slim().pip_install("jinja2")
inference_image = (
Image.debian_slim()
.pip_install(
"Pillow~=10.1.0",
"diffusers~=0.24",
"transformers~=4.35",
"accelerate~=0.25",
"safetensors~=0.4",
)
)
with inference_image.imports():
from io import BytesIO
import torch
from diffusers import AutoencoderKL, AutoPipelineForImage2Image
from diffusers.utils import load_image
from PIL import Image
@app.cls(
gpu="A100",
image=inference_image,
container_idle_timeout=240,
concurrency_limit=10,
)
class Model:
@build()
def build(self):
from huggingface_hub import snapshot_download
# Ignore files that we don't need to speed up download time.
ignore = [
"*.bin",
"*.onnx_data",
"*/diffusion_pytorch_model.safetensors",
]
snapshot_download("stabilityai/sdxl-turbo", ignore_patterns=ignore)
# https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo#speed-up-sdxl-turbo-even-more
# vae is used for a inference speedup
snapshot_download("madebyollin/sdxl-vae-fp16-fix", ignore_patterns=ignore)
@enter()
def enter(self):
self.pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch.float16,
device_map="auto",
variant="fp16",
vae=AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
device_map="auto",
),
)
# We execute a blank inference since there are objects that are lazily loaded that
# we want to start loading before an actual user query
self.pipe(
"blank",
image=Image.new("RGB", (800, 1280), (255, 255, 255)),
num_inference_steps=1,
strength=1,
guidance_scale=0.0,
seed=42,
)
@web_endpoint(method="POST")
async def inference(
self,
image: UploadFile = File(...),
prompt: str = Form(...),
num_iterations: str = Form(...),
):
img_data_in = await image.read()
init_image = load_image(Image.open(BytesIO(img_data_in))).resize((512, 512))
# based on trial and error we saw the best results with 3 inference steps
# it had better generation results than 4,5,6 even though it's faster
num_inference_steps = int(num_iterations)
# note: anything under 0.5 strength gives blurry results
strength = 0.999 if num_iterations == 2 else 0.65
assert num_inference_steps * strength >= 1
image = self.pipe(
prompt,
image=init_image,
num_inference_steps=num_inference_steps,
strength=strength,
guidance_scale=0.0,
seed=42,
).images[0]
byte_stream = BytesIO()
image.save(byte_stream, format="jpeg")
img_data_out = byte_stream.getvalue()
return Response(content=img_data_out, media_type="image/jpeg")
base_path = Path(__file__).parent
static_path = base_path.joinpath("frontend", "dist")
@app.function(
mounts=[Mount.from_local_dir(static_path, remote_path="/assets")],
image=web_image,
allow_concurrent_inputs=10,
)
@asgi_app()
def fastapi_app():
web_app = FastAPI()
from jinja2 import Template
with open("/assets/index.html", "r") as f:
template_html = f.read()
template = Template(template_html)
with open("/assets/index.html", "w") as f:
html = template.render(inference_url=Model.inference.web_url)
f.write(html)
web_app.mount("/", StaticFiles(directory="/assets", html=True))
return web_app