-
Notifications
You must be signed in to change notification settings - Fork 665
Description
Modin version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest released version of Modin.
-
I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow this guide.)
Reproducible Example
Pandas
import pandas as pd
ddf1 = pd.DataFrame({"a":[1,2,3], "b":[4,5,6]})
ddf2 = pd.DataFrame({"a":[10,20,30], "c":[4,5,6]})
ddf1.combine_first(ddf2)
# a b c
# 0 1 4 4
# 1 2 5 5
# 2 3 6 6
ddf1.combine_first(ddf2).dtypes
# a int64
# b int64
# c int64
# dtype: object
Modin:
import modin.pandas as mpd
df1 = mpd.DataFrame({"a":[1,2,3], "b":[4,5,6]})
df2 = mpd.DataFrame({"a":[10,20,30], "c":[4,5,6]})
df1.combine_first(df2)
# a b c
# 0 1 4 4.0
# 1 2 5 5.0
# 2 3 6 6.0
df1.combine_first(df2).dtypes
# a int64
# b int64
# c float64
# dtype: object
Issue Description
int type should not be converted to float.
This is especially problematic with huge datasets, this explodes the amout of ram needed. And it a very hidden and weird issue.
Might be related to #5959, but that has not gotten any attention in a few years.
This is currently a real issue in our codebase.
Expected Behavior
Behave like pandas, column should stay int
Error Logs
No response
Installed Versions
INSTALLED VERSIONS
commit : 14680b3
python : 3.12.9
python-bits : 64
OS : Linux
OS-release : 6.8.0-52-generic
Version : #53~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jan 15 19:18:46 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
Modin dependencies
modin : 0.34.1
ray : 2.48.0
dask : None
distributed : None
pandas dependencies
pandas : 2.2.3
numpy : 2.2.6
pytz : 2025.2
dateutil : 2.9.0.post0
pip : None
Cython : None
sphinx : 8.2.3
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.3.2
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 17.0.0
pyreadstat : None
pytest : 8.4.1
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.16.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None