-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodel.py
42 lines (33 loc) · 1.42 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss
from transformers.modeling_electra import ElectraModel, ElectraPreTrainedModel
class ElectraForMultiLabelClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.electra = ElectraModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
self.loss_fct = BCEWithLogitsLoss()
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
discriminator_hidden_states = self.electra(
input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds
)
pooled_output = discriminator_hidden_states[0][:, 0]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
outputs = (logits,) + discriminator_hidden_states[1:] # add hidden states and attention if they are here
if labels is not None:
loss = self.loss_fct(logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)