-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathmain.py
117 lines (101 loc) · 4.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
from data_loader import load_and_cache_examples
from trainer import Trainer
from utils import init_logger, load_tokenizer, set_seed
def main(args):
init_logger()
set_seed(args)
tokenizer = load_tokenizer(args)
train_dataset = load_and_cache_examples(args, tokenizer, mode="train")
test_dataset = load_and_cache_examples(args, tokenizer, mode="test")
trainer = Trainer(args, train_dataset=train_dataset, test_dataset=test_dataset)
if args.do_train:
trainer.train()
if args.do_eval:
trainer.load_model()
trainer.evaluate("test")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", default="semeval", type=str, help="The name of the task to train")
parser.add_argument(
"--data_dir",
default="./data",
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument("--model_dir", default="./model", type=str, help="Path to model")
parser.add_argument(
"--eval_dir",
default="./eval",
type=str,
help="Evaluation script, result directory",
)
parser.add_argument("--train_file", default="train.tsv", type=str, help="Train file")
parser.add_argument("--test_file", default="test.tsv", type=str, help="Test file")
parser.add_argument("--label_file", default="label.txt", type=str, help="Label file")
parser.add_argument(
"--model_name_or_path",
type=str,
default="bert-base-uncased",
help="Model Name or Path",
)
parser.add_argument("--seed", type=int, default=77, help="random seed for initialization")
parser.add_argument("--train_batch_size", default=16, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=32, type=int, help="Batch size for evaluation.")
parser.add_argument(
"--max_seq_len",
default=384,
type=int,
help="The maximum total input sequence length after tokenization.",
)
parser.add_argument(
"--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--num_train_epochs",
default=10.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--dropout_rate",
default=0.1,
type=float,
help="Dropout for fully-connected layers",
)
parser.add_argument("--logging_steps", type=int, default=250, help="Log every X updates steps.")
parser.add_argument(
"--save_steps",
type=int,
default=250,
help="Save checkpoint every X updates steps.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--add_sep_token",
action="store_true",
help="Add [SEP] token at the end of the sentence",
)
args = parser.parse_args()
main(args)