-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathpredict.py
206 lines (160 loc) · 6.58 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import logging
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from tqdm import tqdm
from model import RBERT
from utils import get_label, init_logger, load_tokenizer
logger = logging.getLogger(__name__)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
return torch.load(os.path.join(pred_config.model_dir, "training_args.bin"))
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
model = RBERT.from_pretrained(pred_config.model_dir, args=args)
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except:
raise Exception("Some model files might be missing...")
return model
def convert_input_file_to_tensor_dataset(
pred_config,
args,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
):
tokenizer = load_tokenizer(args)
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
all_e1_mask = []
all_e2_mask = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
tokens = tokenizer.tokenize(line)
e11_p = tokens.index("<e1>") # the start position of entity1
e12_p = tokens.index("</e1>") # the end position of entity1
e21_p = tokens.index("<e2>") # the start position of entity2
e22_p = tokens.index("</e2>") # the end position of entity2
# Replace the token
tokens[e11_p] = "$"
tokens[e12_p] = "$"
tokens[e21_p] = "#"
tokens[e22_p] = "#"
# Add 1 because of the [CLS] token
e11_p += 1
e12_p += 1
e21_p += 1
e22_p += 1
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
if args.add_sep_token:
special_tokens_count = 2
else:
special_tokens_count = 1
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[: (args.max_seq_len - special_tokens_count)]
# Add [SEP] token
if args.add_sep_token:
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
# e1 mask, e2 mask
e1_mask = [0] * len(attention_mask)
e2_mask = [0] * len(attention_mask)
for i in range(e11_p, e12_p + 1):
e1_mask[i] = 1
for i in range(e21_p, e22_p + 1):
e2_mask[i] = 1
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_e1_mask.append(e1_mask)
all_e2_mask.append(e2_mask)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
all_e1_mask = torch.tensor(all_e1_mask, dtype=torch.long)
all_e2_mask = torch.tensor(all_e2_mask, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_e1_mask, all_e2_mask)
return dataset
def predict(pred_config):
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
logger.info(args)
# Convert input file to TensorDataset
dataset = convert_input_file_to_tensor_dataset(pred_config, args)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)
preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": None,
"e1_mask": batch[3],
"e2_mask": batch[4],
}
outputs = model(**inputs)
logits = outputs[0]
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=1)
# Write to output file
label_lst = get_label(args)
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for pred in preds:
f.write("{}\n".format(label_lst[pred]))
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_file",
default="sample_pred_in.txt",
type=str,
help="Input file for prediction",
)
parser.add_argument(
"--output_file",
default="sample_pred_out.txt",
type=str,
help="Output file for prediction",
)
parser.add_argument("--model_dir", default="./model", type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_config = parser.parse_args()
predict(pred_config)