-
Notifications
You must be signed in to change notification settings - Fork 49
/
MathLib.sol
45 lines (37 loc) · 1.59 KB
/
MathLib.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
uint256 constant WAD = 1e18;
/// @title MathLib
/// @author Morpho Labs
/// @custom:contact [email protected]
/// @notice Library to manage fixed-point arithmetic.
library MathLib {
/// @dev Returns (`x` * `y`) / `WAD` rounded down.
function wMulDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD);
}
/// @dev Returns (`x` * `WAD`) / `y` rounded down.
function wDivDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y);
}
/// @dev Returns (`x` * `WAD`) / `y` rounded up.
function wDivUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y);
}
/// @dev Returns (`x` * `y`) / `d` rounded down.
function mulDivDown(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) {
return (x * y) / d;
}
/// @dev Returns (`x` * `y`) / `d` rounded up.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) {
return (x * y + (d - 1)) / d;
}
/// @dev Returns the sum of the first three non-zero terms of a Taylor expansion of e^(nx) - 1, to approximate a
/// continuous compound interest rate.
function wTaylorCompounded(uint256 x, uint256 n) internal pure returns (uint256) {
uint256 firstTerm = x * n;
uint256 secondTerm = mulDivDown(firstTerm, firstTerm, 2 * WAD);
uint256 thirdTerm = mulDivDown(secondTerm, firstTerm, 3 * WAD);
return firstTerm + secondTerm + thirdTerm;
}
}