-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_dataset_metrics.py
59 lines (46 loc) · 2.21 KB
/
plot_dataset_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def main():
complex_results = load_embedding_results('embeddings/dim_32/complex/dataset_metrics.json')
distmult_results = load_embedding_results('embeddings/dim_32/distmult/dataset_metrics.json')
simple_results = load_embedding_results('embeddings/dim_32/simple/dataset_metrics.json')
transe_results = load_embedding_results('embeddings/dim_32/transe/dataset_metrics.json')
losses = pd.DataFrame({
'complex': complex_results['losses'],
'distmult': distmult_results['losses'],
'simple': simple_results['losses'],
'transe': transe_results['losses']
})
plot_losses(losses)
metrics = pd.concat([
pd.json_normalize(complex_results['metrics']['both']['optimistic']),
pd.json_normalize(distmult_results['metrics']['both']['optimistic']),
pd.json_normalize(simple_results['metrics']['both']['optimistic']),
pd.json_normalize(transe_results['metrics']['both']['optimistic'])
])
plot_metrics(metrics['hits_at_1'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'hits_at_1')
plot_metrics(metrics['hits_at_3'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'hits_at_3')
plot_metrics(metrics['hits_at_5'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'hits_at_5')
plot_metrics(metrics['hits_at_10'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'hits_at_10')
plot_metrics(metrics['arithmetic_mean_rank'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'arithmetic_mean_rank')
plot_metrics(metrics['median_rank'], ['ComplEx', 'DistMult', 'SimplE', 'TransE'], 'arithmetic_mean_rank')
def load_embedding_results(file_path):
with open(file_path) as results_file:
return json.load(results_file)
def plot_losses(losses):
plt.plot(losses)
plt.legend(['Complex', 'DistMult', 'Simple', 'TransE'])
plt.xticks(np.arange(len(losses)))
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
def plot_metrics(metrics, xlabels, ylabel):
plt.bar(np.arange(len(metrics)), metrics)
plt.xticks(np.arange(len(metrics)), labels=xlabels)
plt.ylabel(ylabel)
plt.title(f'Metric {ylabel}')
plt.show()
if __name__ == '__main__':
main()