|
| 1 | +import os |
| 2 | +from timeit import default_timer as timer |
| 3 | +from datetime import timedelta |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import torch |
| 8 | +from pykeen.evaluation import RankBasedEvaluator, RankBasedMetricResults |
| 9 | +from pykeen.triples import TriplesFactory |
| 10 | +from pykeen.datasets import get_dataset |
| 11 | +from pykeen.evaluation.rank_based_evaluator import _iter_ranks |
| 12 | + |
| 13 | + |
| 14 | +def main(): |
| 15 | + wikidata5m_test_set = pd.read_csv('dataset/knowledge_graph/wikidata5m_transductive_test.txt', sep="\t", |
| 16 | + names=['S', 'P', 'O'], header=None) |
| 17 | + trained_models = get_trained_models() |
| 18 | + print( |
| 19 | + f'[X] Loaded {len(trained_models)} trained models and {get_number_of_predicates(wikidata5m_test_set)} test ' |
| 20 | + f'splits per predicate') |
| 21 | + |
| 22 | + wikidata5m_dataset = get_dataset(dataset='Wikidata5M') |
| 23 | + |
| 24 | + print( |
| 25 | + f'[X] Loaded {wikidata5m_dataset.get_normalized_name()} dataset with {wikidata5m_dataset.training.num_triples} ' |
| 26 | + f'training, {wikidata5m_dataset.validation.num_triples} validation and {wikidata5m_dataset.testing.num_triples} ' |
| 27 | + 'test triples') |
| 28 | + |
| 29 | + print(f'[X] Starting evaluation on models') |
| 30 | + start = timer() |
| 31 | + predicate_metrics = evaluate_models_per_predicate(trained_models, wikidata5m_test_set, wikidata5m_dataset) |
| 32 | + |
| 33 | + print(f'[X] Finished evaluation in {timedelta(seconds=timer() - start)}') |
| 34 | + |
| 35 | + predicate_metrics.to_csv('metrics/predicate_metrics.csv') |
| 36 | + |
| 37 | + |
| 38 | +def get_number_of_predicates(dataset_df): |
| 39 | + return dataset_df['P'].nunique() |
| 40 | + |
| 41 | + |
| 42 | +def get_test_set_per_predicate(test_set_file): |
| 43 | + test_set = pd.read_csv(test_set_file, sep="\t", names=['S', 'P', 'O'], header=None) |
| 44 | + return test_set.groupby('P') |
| 45 | + |
| 46 | + |
| 47 | +def get_trained_models(): |
| 48 | + return { |
| 49 | + 'ComplEx': _load_trained_model('embeddings/ComplEx'), |
| 50 | + 'DistMult': _load_trained_model('embeddings/DistMult'), |
| 51 | + 'SimplE': _load_trained_model('embeddings/SimplE'), |
| 52 | + 'TransE': _load_trained_model('embeddings/TransE') |
| 53 | + } |
| 54 | + |
| 55 | + |
| 56 | +def _load_trained_model(saved_model_dir): |
| 57 | + return { |
| 58 | + 'model': torch.load(os.path.join(saved_model_dir, 'trained_model.pkl')), |
| 59 | + 'factory': TriplesFactory.from_path_binary(os.path.join(saved_model_dir, 'training_triples')) |
| 60 | + } |
| 61 | + |
| 62 | + |
| 63 | +def evaluate_models_per_predicate(trained_models, wikidata5m_test_set, dataset): |
| 64 | + aggregated_metrics = pd.DataFrame() |
| 65 | + for model_name, result in trained_models.items(): |
| 66 | + model = result['model'] |
| 67 | + training_factory = result['factory'] |
| 68 | + |
| 69 | + test_factory = TriplesFactory.from_labeled_triples( |
| 70 | + triples=wikidata5m_test_set.values, |
| 71 | + entity_to_id=training_factory.entity_to_id, |
| 72 | + relation_to_id=training_factory.relation_to_id |
| 73 | + ) |
| 74 | + |
| 75 | + evaluator = RankBasedEvaluator(clear_on_finalize=False) |
| 76 | + evaluator.evaluate( |
| 77 | + model=model, |
| 78 | + mapped_triples=test_factory.mapped_triples, |
| 79 | + additional_filter_triples=[ |
| 80 | + dataset.training.mapped_triples, |
| 81 | + dataset.validation.mapped_triples |
| 82 | + ] |
| 83 | + ) |
| 84 | + |
| 85 | + ranks_df = test_factory.tensor_to_df( |
| 86 | + tensor=test_factory.mapped_triples, |
| 87 | + **{"-".join(("rank",) + key): np.concatenate(value) for key, value in evaluator.ranks.items()}, |
| 88 | + **{"-".join(("num_candidates", key)): np.concatenate(value) for key, value in |
| 89 | + evaluator.num_candidates.items()}, |
| 90 | + ) |
| 91 | + |
| 92 | + for (relation_id, relation_label), group in ranks_df.groupby(by=['relation_id', 'relation_label']): |
| 93 | + relation_ranks = {} |
| 94 | + relation_num_candidates = {} |
| 95 | + |
| 96 | + for column in group.columns: |
| 97 | + if column.startswith('rank-'): |
| 98 | + relation_ranks[tuple(column.split('-')[1:])] = [group[column].values] |
| 99 | + elif column.startswith('num_candidates-'): |
| 100 | + relation_num_candidates[tuple(column.split('-'))[1]] = [group[column].values] |
| 101 | + |
| 102 | + metric_results = RankBasedMetricResults.from_ranks( |
| 103 | + metrics=evaluator.metrics, |
| 104 | + rank_and_candidates=_iter_ranks(ranks=relation_ranks, num_candidates=relation_num_candidates) |
| 105 | + ).to_df() |
| 106 | + |
| 107 | + metric_results['relation_id'] = relation_id |
| 108 | + metric_results['relation_label'] = relation_label |
| 109 | + metric_results['model'] = model_name |
| 110 | + |
| 111 | + aggregated_metrics = pd.concat([aggregated_metrics, metric_results], ignore_index=True) |
| 112 | + |
| 113 | + return aggregated_metrics |
| 114 | + |
| 115 | + |
| 116 | +if __name__ == '__main__': |
| 117 | + main() |
0 commit comments