-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscene.cpp
366 lines (274 loc) · 9.18 KB
/
scene.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#include <SDL.h>
#include <list>
#include <cmath>
#include <chrono>
#include <stdio.h>
#include "scene.h"
#include "player.h"
#include "graphics.h"
#define PI 3.14159265358
//-----Scene Class-----
//Constructor that takes a pointer to the player instance as paramter
Scene::Scene(Player * inputPlayer, Screen * inputScreen) {
player = inputPlayer;
screen = inputScreen;
//Rendering Time Variables
renderTime = 0.0f;
collectAverageRenderTime = 0;
frameIndex = 0;
//Only render objects inside drawing distance
drawDistance = 1000.0f;
}
//Renders scene
void Scene::renderScene() {
//Measure time before
auto start_time = std::chrono::high_resolution_clock::now();
//Clear screen
screen->clearScreen();
//Retrieve a list of objects to render
std::list<Triangle> objectsToRender = renderQueue();
//Iterate through each render object
for (auto &triangle : objectsToRender) {
triangle.drawLineTriangle(screen->gRenderer);
}
//Update screen
SDL_RenderPresent(screen->gRenderer);
//Calculate total render time
auto tempRenderTime = std::chrono::high_resolution_clock::now() - start_time;
float milliSecs = (std::chrono::duration_cast<std::chrono::microseconds>(tempRenderTime).count())/1000.0f;
//Sleep the amount of time to make the program run at the correct
if (milliSecs <= (1000/screen->fps)) SDL_Delay(1000/screen->fps - milliSecs);
//Update render time
renderTime = milliSecs;
}
float Scene::getDistToPlayer(Object * inputObject) {
float dist = 5;
float x = player->x + dist * sin(player->thetaAngle) * cos(player->phiAngle);
float y = player->y + dist * sin(player->thetaAngle) * sin(player->phiAngle);
float z = player->z + dist * cos(player->thetaAngle - PI/4);
return sqrt(pow(x - inputObject->centerX, 2) + pow(y - inputObject->centerY, 2) + pow(z - inputObject->centerZ, 2));
}
int Scene::objectVisible(Object * inputObject) {
int renderMargin = 600;
int objectRenderMargin = 0;
int pointsInside = 0;
//-----Calculate where center point of object is projected-----
float halfHFov = player->hFov/2;
float halfVFov = player->vFov/2;
float hFovTimesScreen_WIDTH = screen->SCREEN_WIDTH/player->hFov;
float vFovTimesScreen_HEIGHT = screen->SCREEN_HEIGHT/player->vFov;
//3D Point coordinates with object coordinates offset
float pointX = inputObject->centerX;
float pointY = inputObject->centerY;
float pointZ = inputObject->centerZ;
//-----Camera ROTATION--------
//Calculate phi angle
//Calculate diff values for xy plane
float diffX = pointX - player->x;
float diffY = pointY - player->y;
//Radius
float r = sqrt(pow(diffX, 2) + pow(diffY, 2));
//Degrees
float phi = atan2(diffY, diffX);
//Add rotation
phi -= player->phiAngle;
//Rotate
pointX = player->x + r * cos(phi);
pointY = r * sin(phi);
//Calculate theta angle
//Calculate diff values for xy plane
diffX = pointX - player->x;
float diffZ = pointZ - player->z;
//New radius
r = sqrt(pow(diffX, 2) + pow(diffZ, 2));
//Degrees
float theta = atan2(diffX, diffZ);
//Add rotation
theta += player->thetaAngle;
//Rotate
pointX = r * sin(theta);
pointZ = r * cos(theta);
//-----END Camera ROTATION----
float xFovPos = 0.0f;
float yFovPos = 0.0f;
//Project point
if (pointX != 0) {
xFovPos = atan2(pointY, pointX);
yFovPos = atan2(pointZ, pointX);
}
int screenPosX = (xFovPos + halfHFov)*hFovTimesScreen_WIDTH;
int screenPosY = (yFovPos + halfVFov)*vFovTimesScreen_HEIGHT;
//Calculate maximum width of object on screen using objects maximum radius
float distToObject = sqrt(pow(player->x - inputObject->centerX, 2) + pow(player->y - inputObject->centerY, 2) + pow(player->z - inputObject->centerZ, 2));
float objectRadius = inputObject->maxRadius + objectRenderMargin;
float angleWidth = atan(objectRadius/distToObject);
float screenRadius = (angleWidth/std::max(player->hFov, player->vFov))*std::max(screen->SCREEN_WIDTH, screen->SCREEN_HEIGHT);
//Check circle enveloping object is inside view
for (float angle = 0.0f; angle < 2*PI; angle += PI/2) {
int screenX = screenPosX + (screenRadius * cos(angle));
int screenY = screenPosY + (screenRadius * sin(angle));
//Checks if point is inside view
if ((screenX >= (-renderMargin) &&
screenX < (screen->SCREEN_WIDTH + renderMargin)) &&
(screenY >= (-renderMargin) &&
screenY < (screen->SCREEN_HEIGHT + renderMargin))) {
return 1;
}
}
return 0;
}
//Returns a list with 2d vertex's to render
std::list<Triangle> Scene::renderQueue() {
//Variable pre calculation
float halfHFov = player->hFov/2;
float halfVFov = player->vFov/2;
float hFovTimesScreen_WIDTH = screen->SCREEN_WIDTH/player->hFov;
float vFovTimesScreen_HEIGHT = screen->SCREEN_HEIGHT/player->vFov;
//List to hold render vertices
std::list<Triangle> triangles;
//Iterate through all objects in scene
for (auto * object : objectList) {
//Skip object if not visible
if (!objectVisible(object)) {
continue;
}
//Set object invisible if outside drawing distance
if (getDistToPlayer(object) > drawDistance) {
continue;
}
//Skip object if not visible
if (!object->visible) {
continue;
}
//Retrieve vertexList for object
std::list<Vertex> &vertexList = object->vertexList;
//Iterate through each vertex in object
for (auto &vertex : vertexList) {
//Three points for each vertex
std::list<Point> &pointList = vertex.pointList;
//Used to create zBuffer
float distAvg = 0;
//Variable to hold 2d triangle
Triangle triangle;
//Is inside view
int pointsInside = 0;
for (auto &point : pointList) {
//3D Point coordinates with object coordinates offset
float pointX = point.x + object->x;
float pointY = point.y + object->y;
float pointZ = point.z + object->z;
//-----Camera ROTATION--------
//Calculate phi angle
//Calculate diff values for xy plane
float diffX = pointX - player->x;
float diffY = pointY - player->y;
//Radius
float r = sqrt(pow(diffX, 2) + pow(diffY, 2));
//Degrees
float phi = atan2(diffY, diffX);
//Add rotation
phi -= player->phiAngle;
//Rotate
pointY = r * sin(phi);
//Calculate theta angle
//Calculate diff values for xy plane
diffX = r * cos(phi);
float diffZ = pointZ - player->z;
//New radius
r = sqrt(pow(diffX, 2) + pow(diffZ, 2));
//Degrees
float theta = atan2(diffX, diffZ);
//Add rotation
theta += player->thetaAngle;
//Rotate
pointX = r * sin(theta);
pointZ = r * cos(theta);
//-----END Camera ROTATION----
distAvg += pow(pointX, 2) + pow(pointY, 2) + pow(pointZ, 2);
float xFovPos = 0.0f;
float yFovPos = 0.0f;
//Project point
if (pointX != 0) {
xFovPos = atan2(pointY, pointX);
yFovPos = atan2(pointZ, pointX);
}
int screenPosX = (xFovPos + halfHFov)*hFovTimesScreen_WIDTH;
int screenPosY = (yFovPos + halfVFov)*vFovTimesScreen_HEIGHT;
triangle.addPoint(screenPosX, screenPosY);
//Checks if point is inside view
if ( !pointsInside &&
screenPosX >= 0 &&
screenPosX < screen->SCREEN_WIDTH &&
screenPosY >= 0 &&
screenPosY < screen->SCREEN_HEIGHT) {
pointsInside = 1;
}
}
//If whole triangle is visible
if (pointsInside > 0) {
float modVal = PI/4;
//Alternative 2 as a function of triangle angle
float sphereDist = sqrt(pow(fmod(player->phiAngle, modVal) - fmod(vertex.phi, modVal), 2) + pow(fmod(player->thetaAngle, modVal) - fmod(vertex.theta, modVal), 2))/(2*PI);
//Test
if (sphereDist < 0) {
sphereDist = 0;
} else if (sphereDist > 1) {
sphereDist = 1;
}
float factor = 0.6 + 0.4 * sphereDist;
//Set triangle color and alpha
triangle.color[0] = (int) (object->colorR*factor);
triangle.color[1] = (int) (object->colorG*factor);
triangle.color[2] = (int) (object->colorB*factor);
triangle.alpha = object->alpha;
triangle.solid = object->solid;
triangle.dist = distAvg;
//Iterate through triangleList to find correct render index
std::list<Triangle>::iterator triangleIt;
for (triangleIt = triangles.begin(); triangleIt != triangles.end(); ++triangleIt){
if (distAvg > triangleIt->dist) break;
}
//Add 2d triangle to render queue
triangles.insert(triangleIt, triangle);
}
}
}
return triangles;
}
//Add a object that consists of vertices to the scene
void Scene::addObject(Object * object) {
objectList.push_back(object);
}
//Rotate an object
void Scene::rotateScene(float thetaAdd, float phiAdd) {
for (auto * object : objectList) {
object->rotateObject(player->x, player->y, player->z, thetaAdd, phiAdd);
}
}
//Returns render time
float Scene::getRenderTime() {
return renderTime;
}
//Returns averages render time for given number of frames
float Scene::getAverageRenderTime(int numOfFrames) {
//Start collecting average
if (!collectAverageRenderTime) {
collectAverageRenderTime = 1;
frameTimes = (float*) malloc(numOfFrames*sizeof(float));
} else {
//Add new render time
*(frameTimes + frameIndex) = renderTime;
//Frame position
frameIndex = (frameIndex + 1) % numOfFrames;
//Calculate and return average
int i = 0;
float sum = 0.0f;
while (*(frameTimes + i)) {
sum += *(frameTimes + i);
i++;
}
//Return average
return sum/i;
}
return renderTime;
}