Skip to content

Commit 4f3755e

Browse files
added within_unsorted and within_count (#52)
* added within_unsorted within_count * did cargo fmt * better org --------- Co-authored-by: Rui Hu <[email protected]>
1 parent 5e01eb8 commit 4f3755e

File tree

3 files changed

+167
-5
lines changed

3 files changed

+167
-5
lines changed

benches/bench.rs

+96
Original file line numberDiff line numberDiff line change
@@ -40,3 +40,99 @@ fn bench_nearest_from_kdtree_with_1k_3d_points(b: &mut Bencher) {
4040
}
4141
b.iter(|| kdtree.nearest(&point.0, 8, &squared_euclidean).unwrap());
4242
}
43+
44+
#[bench]
45+
fn bench_within_2k_data_01_radius(b: &mut Bencher) {
46+
let len = 2000usize;
47+
let point = rand_data();
48+
let mut points = vec![];
49+
let mut kdtree = KdTree::with_capacity(3, 16);
50+
for _ in 0..len {
51+
points.push(rand_data());
52+
}
53+
for i in 0..points.len() {
54+
kdtree.add(&points[i].0, points[i].1).unwrap();
55+
}
56+
57+
b.iter(|| kdtree.within(&point.0, 0.1, &squared_euclidean).unwrap());
58+
}
59+
60+
#[bench]
61+
fn bench_within_2k_data_02_radius(b: &mut Bencher) {
62+
let len = 2000usize;
63+
let point = rand_data();
64+
let mut points = vec![];
65+
let mut kdtree = KdTree::with_capacity(3, 16);
66+
for _ in 0..len {
67+
points.push(rand_data());
68+
}
69+
for i in 0..points.len() {
70+
kdtree.add(&points[i].0, points[i].1).unwrap();
71+
}
72+
73+
b.iter(|| kdtree.within(&point.0, 0.2, &squared_euclidean).unwrap());
74+
}
75+
76+
#[bench]
77+
fn bench_within_unsorted_2k_data_01_radius(b: &mut Bencher) {
78+
let len = 2000usize;
79+
let point = rand_data();
80+
let mut points = vec![];
81+
let mut kdtree = KdTree::with_capacity(3, 16);
82+
for _ in 0..len {
83+
points.push(rand_data());
84+
}
85+
for i in 0..points.len() {
86+
kdtree.add(&points[i].0, points[i].1).unwrap();
87+
}
88+
89+
b.iter(|| kdtree.within_unsorted(&point.0, 0.1, &squared_euclidean).unwrap());
90+
}
91+
92+
#[bench]
93+
fn bench_within_unsorted_2k_data_02_radius(b: &mut Bencher) {
94+
let len = 2000usize;
95+
let point = rand_data();
96+
let mut points = vec![];
97+
let mut kdtree = KdTree::with_capacity(3, 16);
98+
for _ in 0..len {
99+
points.push(rand_data());
100+
}
101+
for i in 0..points.len() {
102+
kdtree.add(&points[i].0, points[i].1).unwrap();
103+
}
104+
105+
b.iter(|| kdtree.within_unsorted(&point.0, 0.2, &squared_euclidean).unwrap());
106+
}
107+
108+
#[bench]
109+
fn bench_within_count_2k_data_01_radius(b: &mut Bencher) {
110+
let len = 2000usize;
111+
let point = rand_data();
112+
let mut points = vec![];
113+
let mut kdtree = KdTree::with_capacity(3, 16);
114+
for _ in 0..len {
115+
points.push(rand_data());
116+
}
117+
for i in 0..points.len() {
118+
kdtree.add(&points[i].0, points[i].1).unwrap();
119+
}
120+
121+
b.iter(|| kdtree.within_count(&point.0, 0.1, &squared_euclidean).unwrap());
122+
}
123+
124+
#[bench]
125+
fn bench_within_count_2k_data_02_radius(b: &mut Bencher) {
126+
let len = 2000usize;
127+
let point = rand_data();
128+
let mut points = vec![];
129+
let mut kdtree = KdTree::with_capacity(3, 16);
130+
for _ in 0..len {
131+
points.push(rand_data());
132+
}
133+
for i in 0..points.len() {
134+
kdtree.add(&points[i].0, points[i].1).unwrap();
135+
}
136+
137+
b.iter(|| kdtree.within_count(&point.0, 0.2, &squared_euclidean).unwrap());
138+
}

src/kdtree.rs

+38-5
Original file line numberDiff line numberDiff line change
@@ -93,14 +93,11 @@ impl<A: Float + Zero + One, T: std::cmp::PartialEq, U: AsRef<[A]> + std::cmp::Pa
9393
.collect())
9494
}
9595

96-
pub fn within<F>(&self, point: &[A], radius: A, distance: &F) -> Result<Vec<(A, &T)>, ErrorKind>
96+
#[inline(always)]
97+
fn evaluated_heap<F>(&self, point: &[A], radius: A, distance: &F) -> BinaryHeap<HeapElement<A, &T>>
9798
where
9899
F: Fn(&[A], &[A]) -> A,
99100
{
100-
self.check_point(point)?;
101-
if self.size == 0 {
102-
return Ok(vec![]);
103-
}
104101
let mut pending = BinaryHeap::new();
105102
let mut evaluated = BinaryHeap::<HeapElement<A, &T>>::new();
106103
pending.push(HeapElement {
@@ -110,9 +107,45 @@ impl<A: Float + Zero + One, T: std::cmp::PartialEq, U: AsRef<[A]> + std::cmp::Pa
110107
while !pending.is_empty() && (-pending.peek().unwrap().distance <= radius) {
111108
self.nearest_step(point, self.size, radius, distance, &mut pending, &mut evaluated);
112109
}
110+
evaluated
111+
}
112+
113+
pub fn within<F>(&self, point: &[A], radius: A, distance: &F) -> Result<Vec<(A, &T)>, ErrorKind>
114+
where
115+
F: Fn(&[A], &[A]) -> A,
116+
{
117+
self.check_point(point)?;
118+
if self.size == 0 {
119+
return Ok(vec![]);
120+
}
121+
let evaluated = self.evaluated_heap(point, radius, distance);
113122
Ok(evaluated.into_sorted_vec().into_iter().map(Into::into).collect())
114123
}
115124

125+
pub fn within_unsorted<F>(&self, point: &[A], radius: A, distance: &F) -> Result<Vec<(A, &T)>, ErrorKind>
126+
where
127+
F: Fn(&[A], &[A]) -> A,
128+
{
129+
self.check_point(point)?;
130+
if self.size == 0 {
131+
return Ok(vec![]);
132+
}
133+
let evaluated = self.evaluated_heap(point, radius, distance);
134+
Ok(evaluated.into_iter().map(Into::into).collect())
135+
}
136+
137+
pub fn within_count<F>(&self, point: &[A], radius: A, distance: &F) -> Result<usize, ErrorKind>
138+
where
139+
F: Fn(&[A], &[A]) -> A,
140+
{
141+
self.check_point(point)?;
142+
if self.size == 0 {
143+
return Ok(0);
144+
}
145+
let evaluated = self.evaluated_heap(point, radius, distance);
146+
Ok(evaluated.len())
147+
}
148+
116149
fn nearest_step<'b, F>(
117150
&self,
118151
point: &[A],

tests/kdtree.rs

+33
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,39 @@ fn it_works() {
6060
vec![(0.0, &1), (2.0, &2), (2.0, &0)]
6161
);
6262

63+
let unsorted1 = kdtree.within_unsorted(&POINT_A.0, 0.0, &squared_euclidean).unwrap();
64+
let ans1 = vec![(0.0, &0)];
65+
assert_eq!(unsorted1.len(), ans1.len());
66+
assert_eq!(
67+
kdtree.within_count(&POINT_A.0, 0.0, &squared_euclidean).unwrap(),
68+
ans1.len()
69+
);
70+
for item in unsorted1 {
71+
assert!(ans1.contains(&item));
72+
}
73+
74+
let unsorted2 = kdtree.within_unsorted(&POINT_B.0, 1.0, &squared_euclidean).unwrap();
75+
let ans2 = vec![(0.0, &1)];
76+
assert_eq!(unsorted2.len(), ans2.len());
77+
assert_eq!(
78+
kdtree.within_count(&POINT_B.0, 1.0, &squared_euclidean).unwrap(),
79+
ans2.len()
80+
);
81+
for item in unsorted2 {
82+
assert!(ans2.contains(&item));
83+
}
84+
85+
let unsorted3 = kdtree.within_unsorted(&POINT_B.0, 2.0, &squared_euclidean).unwrap();
86+
let ans3 = vec![(0.0, &1), (2.0, &2), (2.0, &0)];
87+
assert_eq!(unsorted3.len(), ans3.len());
88+
assert_eq!(
89+
kdtree.within_count(&POINT_B.0, 2.0, &squared_euclidean).unwrap(),
90+
ans3.len()
91+
);
92+
for item in unsorted3 {
93+
assert!(ans3.contains(&item));
94+
}
95+
6396
assert_eq!(
6497
kdtree
6598
.iter_nearest(&POINT_A.0, &squared_euclidean)

0 commit comments

Comments
 (0)