-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththread_safe_queue.h
91 lines (77 loc) · 2.55 KB
/
thread_safe_queue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
// From an implementation by Anthony Williams (http://www.justsoftwaresolutions.co.uk/2008/09/)
// todo: revise looking at https://github.com/anthonywilliams/ccia_code_samples/blob/main/listings/listing_6.2.cpp
// better choice: Intel TBB concurrent_queue
// concurrent_queue like std::queue is an adaptor of (Front Insertion+Back Insertion) Sequence containers
// with a FIFO interface; you can instantiate concurrent_queue with std::deque, std::list ecc.
// Unlike std::queue, this adaptor allows atomic operations on the queue so his interface is different
// from std::queue but follows a widespread model
// WARNING: please do not use this class in production, instead prefer Intel TBB concurrent_queue
#ifndef THREAD_SAFE_QUEUE_H
#define THREAD_SAFE_QUEUE_H
#include <mutex>
#include <condition_variable>
#include <queue>
template<typename T,
template <typename T, typename Alloc = std::allocator<T> > class container = std::deque>
class thread_safe_queue
{
private:
container<T> queue_;
mutable std::mutex mutex_;
std::condition_variable condition_variable_;
public:
void push(T const& data)
{
{
std::unique_lock lock(mutex_);
queue_.push_back(data);
} //lock.unlock();
condition_variable_.notify_one();
}
bool empty() const
{
std::unique_lock lock(mutex_);
return queue_.empty();
}
bool try_pop(T& popped_value)
{
std::unique_lock lock(mutex_);
if(queue_.empty())
{
return false;
}
popped_value = queue_.front();
queue_.pop_front();
return true;
}
/* see next method for a better implementation
void wait_and_pop(T& popped_value)
{
std::unique_lock lock(mutex_);
while(queue_.empty())
{
condition_variable_.wait(lock);
}
popped_value = queue_.front();
queue_.pop_front();
}
*/
void wait_and_pop(T& popped_value)
{
std::unique_lock lock(mutex_);
condition_variable_.wait(lock, [this] { return !queue_.empty(); });
popped_value = queue_.front();
queue_.pop_front();
}
template<typename Duration>
bool timed_wait_and_pop(T& popped_value, Duration const& wait_duration)
{
std::unique_lock lock(mutex_);
if(!condition_variable_.wait_for(lock, wait_duration, [this] { return !queue_.empty(); }))
return false;
popped_value = queue_.front();
queue_.pop_front();
return true;
}
};
#endif //THREAD_SAFE_QUEUE_H