|
| 1 | +from nestedtensor import torch |
| 2 | +import nestedtensor |
| 3 | +import argparse |
| 4 | +import time |
| 5 | +import random |
| 6 | +import pprint |
| 7 | + |
| 8 | +EMBED_DIM = 1024 |
| 9 | + |
| 10 | +SEED = 0 |
| 11 | + |
| 12 | + |
| 13 | +def gen_tensor(): |
| 14 | + globals()['SEED'] += 1 |
| 15 | + # return torch.tensor([globals()['SEED']]) |
| 16 | + return torch.rand(EMBED_DIM).to(device='cuda') |
| 17 | + |
| 18 | + |
| 19 | +def gen_clusters(num_clusters, size_range): |
| 20 | + |
| 21 | + def gen_cluster(num_entries): |
| 22 | + return [gen_tensor() for _ in range(num_entries)] |
| 23 | + |
| 24 | + return [gen_cluster(random.randint(*size_range)) for _ in range(num_clusters)] |
| 25 | + |
| 26 | + |
| 27 | +def gen_algorithm_naive(keys, sub_clusters): |
| 28 | + # For-loops over vectors |
| 29 | + def _naive(): |
| 30 | + results = [] |
| 31 | + for sub_cluster, key in zip(sub_clusters, keys): |
| 32 | + sub_cluster_results = [] |
| 33 | + for cluster in sub_cluster: |
| 34 | + sub_cluster_results.append( |
| 35 | + [torch.dot(key, entry).item() for entry in cluster]) |
| 36 | + results.append(sub_cluster_results) |
| 37 | + return results |
| 38 | + return _naive |
| 39 | + |
| 40 | +def gen_algorithm_mv(keys, sub_clusters): |
| 41 | + # For-loops over vectors and matrices |
| 42 | + new_sub_clusters = [] |
| 43 | + for sub_cluster in sub_clusters: |
| 44 | + new_sub_cluster = [torch.stack(cluster) for cluster in sub_cluster] |
| 45 | + new_sub_clusters.append(new_sub_cluster) |
| 46 | + sub_clusters = new_sub_clusters |
| 47 | + def _mv(): |
| 48 | + results = [] |
| 49 | + for sub_cluster, key in zip(sub_clusters, keys): |
| 50 | + sub_cluster_results = [] |
| 51 | + for cluster in sub_cluster: |
| 52 | + sub_cluster_results.append(torch.mv(cluster, key)) |
| 53 | + results.append(sub_cluster_results) |
| 54 | + return results |
| 55 | + return _mv |
| 56 | + |
| 57 | +def gen_algorithm_nested_mv(keys, sub_clusters): |
| 58 | + # For-loops over vectors and matrices |
| 59 | + new_sub_clusters = [] |
| 60 | + for sub_cluster in sub_clusters: |
| 61 | + new_sub_cluster = [torch.tensor(list(map(list, cluster))) for cluster in sub_cluster] |
| 62 | + new_sub_clusters.append(new_sub_cluster) |
| 63 | + nested_sub_clusters = torch.nested_tensor(sub_clusters).to_tensor(2) |
| 64 | + nested_keys = torch.nested_tensor(keys) |
| 65 | + def _nested_mv(): |
| 66 | + return torch.mv(nested_sub_clusters, nested_keys) |
| 67 | + return _nested_mv |
| 68 | + |
| 69 | +def gen_algorithm_nested_jit_mv(keys, sub_clusters): |
| 70 | + # For-loops over vectors and matrices |
| 71 | + new_sub_clusters = [] |
| 72 | + for sub_cluster in sub_clusters: |
| 73 | + new_sub_cluster = [] |
| 74 | + for cluster in sub_cluster: |
| 75 | + new_sub_cluster.append(torch.stack(cluster)) |
| 76 | + new_sub_clusters.append(new_sub_cluster) |
| 77 | + nested_sub_clusters = nestedtensor._ListNestedTensor(new_sub_clusters) |
| 78 | + print("HERE") |
| 79 | + print(nested_sub_clusters.nested_size()) |
| 80 | + nested_keys = nestedtensor._ListNestedTensor(keys) |
| 81 | + print(nested_keys.nested_size()) |
| 82 | + |
| 83 | + @torch.jit.script |
| 84 | + def my_fun(x, y): |
| 85 | + return torch.mv(x, y) |
| 86 | + |
| 87 | + def _nested_jit_mv(): |
| 88 | + return nestedtensor._C.jit_apply_function((nested_sub_clusters, nested_keys), my_fun) |
| 89 | + return _nested_jit_mv |
| 90 | + |
| 91 | + |
| 92 | +def print_results(results, keys, sub_clusters, print_details=False): |
| 93 | + if print_details: |
| 94 | + for i, sub_cluster in enumerate(sub_clusters): |
| 95 | + print("\n\u001b[31msub cluster {} count {} total number of entries {}\u001b[0m".format( |
| 96 | + i, len(sub_cluster), sum(map(len, sub_cluster)))) |
| 97 | + pprint.pprint(sub_cluster) |
| 98 | + print("\nkeys") |
| 99 | + pprint.pprint(keys) |
| 100 | + print("") |
| 101 | + |
| 102 | + for i, result in enumerate(results): |
| 103 | + print( |
| 104 | + "result scores for \u001b[31msub cluster {} and key {}\u001b[0m".format(i, i)) |
| 105 | + pprint.pprint(result) |
| 106 | + |
| 107 | +def benchmark_fn(fn, run_time = 15.0): |
| 108 | + times = [] |
| 109 | + num_runs = 0 |
| 110 | + fn() |
| 111 | + t = 0.0 |
| 112 | + while (t < run_time): |
| 113 | + ti = time.time() |
| 114 | + fn() |
| 115 | + torch.cuda.synchronize() |
| 116 | + ti = time.time() - ti |
| 117 | + t += ti |
| 118 | + times.append(ti) |
| 119 | + times = torch.tensor(times) * 1e6 |
| 120 | + return "fn {:<15} avg(us): {:10.4f} std(us): {:10.4f} num_runs: {}".format(fn.__name__, times.mean().item(), times.std().item(), len(times)) |
| 121 | + |
| 122 | + |
| 123 | +if __name__ == "__main__": |
| 124 | + parser = argparse.ArgumentParser() |
| 125 | + parser.add_argument('--print-results', dest='print_results', action='store_true') |
| 126 | + args = parser.parse_args() |
| 127 | + # NOTE: This dodging creating these subclusters from a single set of clusters |
| 128 | + # This additional memory pressure might be crucial |
| 129 | + keys = [gen_tensor()] * 16 |
| 130 | + clusters = gen_clusters(16, (16,16)) |
| 131 | + sub_clusters = [[clusters[random.randint(0, 15)]] * 8 for _ in range(16)] |
| 132 | + |
| 133 | + # Two keys for now |
| 134 | + # Simulating some overlap |
| 135 | + |
| 136 | + sub_clusters = [clusters[:3], clusters[2:]] |
| 137 | + |
| 138 | + # Get algorithm |
| 139 | + gen_results_naive = gen_algorithm_naive(keys, sub_clusters) |
| 140 | + gen_results_mv = gen_algorithm_mv(keys, sub_clusters) |
| 141 | + gen_results_nested_mv = gen_algorithm_nested_mv(keys, sub_clusters) |
| 142 | + gen_results_nested_jit_mv = gen_algorithm_nested_jit_mv(keys, sub_clusters) |
| 143 | + |
| 144 | + # print(benchmark_fn(gen_results_naive)) |
| 145 | + # print(benchmark_fn(gen_results_mv)) |
| 146 | + # print(benchmark_fn(gen_results_nested_mv)) |
| 147 | + print(benchmark_fn(gen_results_nested_jit_mv)) |
| 148 | + # import cProfile, pstats, io |
| 149 | + # pr = cProfile.Profile() |
| 150 | + # pr.enable() |
| 151 | + # pr.disable() |
| 152 | + # s = io.StringIO() |
| 153 | + # sortby = 'tottime' |
| 154 | + # ps = pstats.Stats(pr, stream=s).sort_stats(sortby) |
| 155 | + # ps.print_stats() |
| 156 | + # print(s.getvalue()) |
| 157 | + # print(benchmark_fn(gen_results_nested_mv)) |
| 158 | + |
| 159 | + if args.print_results: |
| 160 | + print('naive') |
| 161 | + print_results(gen_results_naive(), keys, sub_clusters) |
| 162 | + print('\nmv') |
| 163 | + print_results(gen_results_mv(), keys, sub_clusters) |
| 164 | + print('\nnested_mv') |
| 165 | + print_results(gen_results_nested_mv(), keys, sub_clusters) |
0 commit comments