Skip to content

Commit 7d8761b

Browse files
committed
Fix typos
Signed-off-by: Marcello Seri <[email protected]>
1 parent cb82278 commit 7d8761b

File tree

2 files changed

+12
-12
lines changed

2 files changed

+12
-12
lines changed

1-manifolds.tex

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -512,7 +512,7 @@ \section{Differentiable manifolds}
512512
Note that by gluing antipodal points, we are identifying the north and south hemispheres, thus essentially flattening the sphere to a disk.
513513

514514
\begin{exercise}\label{exe:RPSN}
515-
Show that the map $n: \R^{n+1}_0\to \bS^n$, $n(x) = \frac{x}{\|x\|}$ induces a homeomorphism $\hat n:\RP^n \to \bS^n/\!\sim$.\\
515+
Show that the map $n: \R^{n+1}_0\to \bS^n$, $n(x) = \frac{x}{\|x\|}$, induces a homeomorphism $\hat n:\RP^n \to \bS^n/\!\sim$.\\
516516
\textit{\small Hint: find an inverse map and show that both $\hat n$ and its inverse are continuous.}
517517
\end{exercise}
518518

@@ -526,7 +526,7 @@ \section{Differentiable manifolds}
526526
\end{equation}
527527
Since multiplication by $t\neq 0$ is a homeomorphism of $\R_0^{n+1}$, the set $t U$ is open for any $t$, as is their union, $\RP^n$ is both Hausdorff and second-countable.
528528

529-
For each $i=0,\ldots,n$, define $\widetilde U_i := \{x\in\R^{n+1}_0 \mid x^\neq0\}$, the set where the $i$-th coordinate is not $0$, and let $U_i = \pi(\widetilde U_i)\subset \RP^n$.
529+
For each $i=0,\ldots,n$, define $\widetilde U_i := \{x\in\R^{n+1}_0 \mid x^i\neq0\}$, the set where the $i$-th coordinate is not $0$, and let $U_i = \pi(\widetilde U_i)\subset \RP^n$.
530530
Since $\widetilde U_i$ is open, $U_i$ is open.
531531
Define
532532
\begin{align}
@@ -592,20 +592,20 @@ \section{Smooth maps and differentiability}
592592

593593
Before considering the general definition of a differentiable map, let's look at the simpler example of differentiable functions $f:M\to\R$ between a smooth manifold $M$ and $\R$.
594594

595+
\begin{marginfigure}
596+
\includegraphics{1_5-diff-fun-v2.pdf}
597+
\label{fig:diff-fun}
598+
\caption{A function is differentiable if it is differentiable as a euclidean function through the magnifying lens provided by the charts.}
599+
\end{marginfigure}
595600
\begin{definition}
596601
A function $f:M\to\R$ from a smooth manifold $M$ of dimension $n$ to $\R$ is \emph{smooth}, or \emph{of class $C^\infty$}, if for any smooth chart $(\varphi, V)$ for $M$ the map $f\circ\varphi^{-1}:\varphi(V)\subset\R^n \to \R$ is smooth as a euclidean function on the open subset $\varphi(V)\subset\R^n$.
597-
\begin{marginfigure}
598-
\includegraphics{1_5-diff-fun-v2.pdf}
599-
\label{fig:diff-fun}
600-
\caption{A function is differentiable if it is differentiable as a euclidean function through the magnifying lens provided by the charts.}
601-
\end{marginfigure}
602602
We denote the space of smooth functions by $C^\infty(M)$.
603603
\end{definition}
604604

605605
This, colloquially speaking, means that a function is differentiable if it is differentiable as a euclidean function through the magnifying lens (see Figure~\ref{fig:diff-fun}) provided by the charts.
606606

607607
\begin{exercise}
608-
Define on the following operations.
608+
Define the following operations on $C^\infty(M)$.
609609
For any $f,g\in C^\infty(M)$, $c\in\R$,
610610
\begin{equation}
611611
(f+g)(x) := f(x) + g(x),\quad
@@ -635,11 +635,11 @@ \section{Smooth maps and differentiability}
635635

636636
\begin{definition}
637637
Let $F:M_1\to M_2$ be a continuous map \footnote{Remember: continuity is not a problem since $M_1$ and $M_2$ are topological spaces.} between two smooth manifolds of dimension $n_1$ and $n_2$ respectively.
638-
We say that $f$ is \emph{smooth}, or \emph{of class $C^\infty$}, if, for any chart $(\varphi_1, V_1)$ of $M_1$ and $(\varphi_2, V_2)$ of $M_2$, the map
638+
We say that $F$ is \emph{smooth}, or \emph{of class $C^\infty$}, if, for any chart $(\varphi_1, V_1)$ of $M_1$ and $(\varphi_2, V_2)$ of $M_2$, the map
639639
\begin{align}
640640
\varphi_2 \circ F \circ \varphi_1^{-1}: U_1 \to U_2,\\
641-
U_1 := \varphi_1(V_1 \cap f^{-1}(V_2))\subset\R^{n_1},\\
642-
U_2 := \varphi_2(f(V_1) \cap V_2)\subset\R^{n_2},
641+
U_1 := \varphi_1(V_1 \cap F^{-1}(V_2))\subset\R^{n_1},\\
642+
U_2 := \varphi_2(F(V_1) \cap V_2)\subset\R^{n_2},
643643
\end{align}
644644
is smooth as a euclidean function.
645645
\marginnote[-6em]{Differently from your calculus classes, we are defining differentiability \emph{before} we define what the derivative is. Getting to it will require some amount of work, and will have to wait until the next chapter.}

aom.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@
207207
\setlength{\parskip}{\baselineskip}
208208
Copyright \copyright\ \the\year\ \thanklessauthor
209209

210-
\par Version 0.4 -- \today
210+
\par Version 0.4.1 -- \today
211211

212212
\vfill
213213
\small{\doclicenseThis}

0 commit comments

Comments
 (0)