Skip to content

Commit 7e0b507

Browse files
committed
Fix typos, add clarifications and exercises
Signed-off-by: Marcello Seri <[email protected]>
1 parent 86077a6 commit 7e0b507

File tree

4 files changed

+32
-15
lines changed

4 files changed

+32
-15
lines changed

2-tangentbdl.tex

Lines changed: 28 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -255,7 +255,7 @@ \section{Germs and derivations}
255255
For any $p\in U$, we can define a derivation of $C^\infty(U)$ at $p$ as
256256
\begin{equation}
257257
\frac{\partial}{\partial x^i}\Big|_p : C^\infty(U) \to \R, \quad
258-
\frac{\partial}{\partial x^i}\Big|_p (f) := D_i(f\circ\varphi^{-1})(\varphi(p)).
258+
\frac{\partial}{\partial x^i}\Big|_p (f) := \frac{\partial f}{\partial x^i}(p) := D_i(f\circ\varphi^{-1})(\varphi(p)).
259259
\end{equation}
260260
From now on, it will get more and more convenient to draw commutative diagrams to see ``how things are moving around'':
261261
\begin{equation}
@@ -343,6 +343,7 @@ \section{Germs and derivations}
343343
f = f(p) + x^i (g_i \circ \varphi),
344344
\quad g_i(0) = D_i (f \circ \varphi^{-1})(0) = \frac{\partial}{\partial x_i}\Big|_p(f).
345345
\end{equation}
346+
\marginnote{If we are careful with the meaning of our notation, we could write more succintly $\frac{\partial f}{\partial x_i}(p)$ in place of $\frac{\partial}{\partial x_i}\big|_p(f)$ in the same fashion as in Example~\ref{ex:partialderivative}.}
346347
Thus, for any derivation $v$, we obtain
347348
\begin{equation}
348349
v(f) = v(f(p)) + v(x^i)g_i(0) + x^i(p) v(g_i\circ\varphi) = v(x^i) \frac{\partial}{\partial x_i}\Big|_p(f).
@@ -523,9 +524,8 @@ \section{The differential of a smooth map}\label{sec:diffsmooth}
523524
\frac{\partial F^m}{\partial x^1} (p) & \cdot & \frac{\partial F^m}{\partial x^n} (p)
524525
\end{pmatrix}
525526
\end{equation}
526-
without using the Proposition above.
527-
528-
\noindent\textit{\small Hint: show that $d F_p \left(\frac{\partial}{\partial x^i}\big|_p\right) (f) = \left(\frac{\partial F^j}{\partial x^i} (p) \frac{\partial}{\partial y^j}\big|_{F(p)}\right) (f)$.}
527+
without using the Proposition above. Here $\frac{\partial F^i}{\partial x^j} (p) = \frac{\partial}{\partial x^j}\big|_p (F^i)$, where $F^i$ is the $i$th component of $F$ with respect to the chart with coordinates $y^j$.\\
528+
\textit{\small Hint: show that $d F_p \left(\frac{\partial}{\partial x^i}\big|_p\right) (f) = \left(\frac{\partial F^j}{\partial x^i} (p) \frac{\partial}{\partial y^j}\big|_{F(p)}\right) (f)$.}
529529
\end{exercise}
530530

531531
\newthought{A particularly important consequence} of this theorem is that our definition coincides with our old euclidean notions if we set $M=\R^m$ and $N=\R^n$.
@@ -565,7 +565,7 @@ \section{The differential of a smooth map}\label{sec:diffsmooth}
565565
The construction that we employed forced us to fix a basis for the spaces, if this was truly necessary it would defeat the purpose of this whole chapter.
566566
Fortunately for us, the following exercise shows that, at any given point, the tangent space to a vector space is \emph{canonically}\footnote{That is, independently of the choice of basis.} identified with the vector space itself.
567567

568-
\begin{exercise}\label{ex:tg_curve_iso}
568+
\begin{exercise}[\textit{[homework 1]}]\label{ex:tg_curve_iso}
569569
Let $V$ and $W$ be finite-dimensional vector spaces, endowed with their standard smooth structure (see Exercise~\ref{exe:subsetsmanifolds}).
570570
\begin{enumerate}
571571
\item Fix $a\in V$. For any vector $v\in V$ define a map $\cT_a(v) : C^\infty(V) \to \R$ by
@@ -590,15 +590,13 @@ \section{The differential of a smooth map}\label{sec:diffsmooth}
590590
For example, since $GL_n(\R)$ is an open submanifolds of the vector space $M_n(\R)$, we can identify its tangent space at each point $X\in GL_n(\R)$ with the full space of matrices $M_n(\R)$.
591591

592592
\begin{exercise}[Tangent space of a product manifold]
593-
Let $M_1, \ldots, M_k$ be smooth manifolds, and for each $j$ let $\pi_j:M_1\times\cdots\times M_k \to M_j$ be the projection onto the $M_j$ factor.
593+
Let $M_1, \ldots, M_k$ be smooth manifolds (without boundary\footnote{The statement is true also if one (only one!) of the $M_i$ spaces is a smooth manifold with boundary. If there is more than one manifold with boundary, the product space will have ``corners'' that cannot be mapped to half spaces and thus is not a smooth manifold, as a simple example you can consider the closed square $[0,1]\times [0,1]$.}), and for each $j$ let $\pi_j:M_1\times\cdots\times M_k \to M_j$ be the projection onto the $M_j$ factor.
594594
For any point $p=(p_1,\ldots,p_k)\in M_1\times\cdots\times M_k$, the map
595595
\begin{align}
596596
\sigma &: T_p(M_1\times\cdots\times M_k) \to T_p M_1\times\cdots\times T_p M_k\\
597597
\sigma &: v \mapsto \left(d(\pi_1)_p(v), \ldots, d(\pi_k)_p(v)\right)
598598
\end{align}
599599
is an isomorphism.
600-
601-
The same is true if some of the $M_i$ spaces are smooth manifolds with boundary (optional).
602600
\end{exercise}
603601

604602
\begin{remark}
@@ -714,15 +712,15 @@ \section{Tangent vectors as tangents to curves}
714712
Let $F:M\to N$ b a smooth map between smooth manifolds and $\gamma:I\to M$ a smooth curve in $M$.
715713
Then
716714
\begin{equation}
717-
d F_{\varphi(t)} (\varphi'(t)) = (F\circ\gamma)'(t).
715+
d F_{\gamma(t)} (\gamma'(t)) = (F\circ\gamma)'(t).
718716
\end{equation}
719717
\end{proposition}
720718
\begin{proof}
721719
We are going to use~\eqref{eq:tg_curve_diff} as definition of $\gamma'(t)$.
722720
Applying the chain rule we obtain:
723721
\begin{align}
724-
d F_{\varphi(t)} (\varphi'(t))
725-
&= d F_{\varphi(t)} \circ d\varphi_t \left(\frac{\partial}{\partial t}\Big|_t\right) \\
722+
d F_{\gamma(t)} (\gamma'(t))
723+
&= d F_{\gamma(t)} \circ d\gamma_t\left(\frac{\partial}{\partial t}\Big|_t\right) \\
726724
&= d (F\circ\gamma)_t \left(\frac{\partial}{\partial t}\Big|_t\right) \\
727725
&= (F\circ\gamma)'(t).
728726
\end{align}
@@ -1208,6 +1206,24 @@ \section{Submanifolds}
12081206
\end{enumerate}
12091207
\end{exercise}
12101208

1209+
Of course, we can also define subbundles.
1210+
\begin{definition}
1211+
Let $\pi:E \to M$ be a rank-$n$ vector bundle and $F\subset E$ a submanifold.
1212+
If for all $p\in M$, the intersection $F_p := F\cap E_p$ is a $k$-dimensional subspace of the vector space $E_p$ and $\pi|_F : F \to M$ defines a rank-$k$ vector bundle, then $\pi|F: F \to M$ is called a \emph{subbundle} of $E$.
1213+
\end{definition}
1214+
1215+
\begin{exercise}[\textit{[homework 1]}]
1216+
Let $M$ be a smooth $m$-manifold and $N$ a smooth $n$-manifold.
1217+
Let $F:M\to N$ be an embedding and denote $\widetilde M = F(M)\subset N$.
1218+
\begin{enumerate}[(a)]
1219+
\item Show that the tangent bundle of $M$ in $N$, given by $T\widetilde M := dF(TM) \subset TN\Big|_{\widetilde M}$, is a subbundle of $TN\Big|_{\widetilde M}$ by providing explicit local trivialisations in terms of the charts $(U, \varphi)$ for $M$.
1220+
\item Assume that there exist a smooth function $\Phi:N\to\R^{n-k}$ such that $\widetilde M := \{p\in N \mid \Phi(p) = 0\}$ and $d\Phi_p$ has full rank for all $p\in\widetilde M$. Prove that
1221+
\begin{equation}
1222+
T\widetilde{M} = \{(p,v)\in TN|_{\widetilde{M}} \mid v\in\ker(d\Phi_p)\}.
1223+
\end{equation}
1224+
\end{enumerate}
1225+
\end{exercise}
1226+
12111227
We still have a question pending since the beginning of the chapter.
12121228
Is the tangent space to a sphere the one that we naively imagine (see Figure~\ref{fig:tan-embedded-sphere})?
12131229
To finally answer the question, we will prove one last proposition.
@@ -1258,7 +1274,7 @@ \section{Submanifolds}
12581274
Show that $g$ is a smooth embedding and, therefore, that $g(U)$ is a smooth embedded $n$-dimensional submanifold\footnote{$g(U)$ is the the \emph{graph} of $f$!} of $\R^{n+1}$.
12591275
\end{exercise}
12601276

1261-
\begin{exercise}\label{exe:onsubmanifold}
1277+
\begin{exercise}[\textit{[homework 1]}]\label{exe:onsubmanifold}
12621278
Show that the orthogonal matrices $O(n) := \{ Q\in GL(n) \mid Q^TQ=\id \}$ form a $n(n-1)/2$-dimensional submanifold of the $n^2$-manifold $\mathrm{Mat}(n)$ of $n\times n$-matrices.
12631279

12641280
Show also that

3-vectorfields.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ \section{Vector fields}
2929
\end{equation}
3030
This defines $n$ functions $X^i: U\to\R$, called \emph{component functions of $X$} in the chart.
3131

32-
\begin{exercise}
32+
\begin{exercise}[\textit{[homework 1]}]
3333
Show that, in the notation above, the restriction of $X$ to $U$ is smooth if and only if its component functions with respect to the chart are smooth.
3434
\end{exercise}
3535

@@ -261,7 +261,7 @@ \section{Lie brackets}
261261
[X,Y] = \left(X^i\frac{\partial Y^j}{\partial x^i} - Y^i\frac{\partial X^j}{y^i}\right)\frac{\partial}{\partial x^j}.
262262
\end{equation}
263263
\end{proposition}
264-
\begin{exercise}
264+
\begin{exercise}[\textit{[homework 1]}]
265265
Prove the proposition.
266266
\end{exercise}
267267

5-tensors.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -151,6 +151,7 @@ \section{Tensors}
151151
\end{equation}
152152

153153
A \emph{metric tensor} or \emph{scalar product} is a non-degenerate pseudo-metric tensor.
154+
The Riemannian metric is a metric tensor on the tangent bundle of a manifold.
154155
An example of non-degenerate tensor which is not a metric is the so-called \emph{symplectic form}: a skew-symmetric non-degenerate $(0,2)$-tensor which is central in classical mechanics and the study of Hamiltonian systems.
155156
\end{definition}
156157

aom.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@
207207
\setlength{\parskip}{\baselineskip}
208208
Copyright \copyright\ \the\year\ \thanklessauthor
209209

210-
\par Version 0.4.4 -- \today
210+
\par Version 0.5 -- \today
211211

212212
\vfill
213213
\small{\doclicenseThis}

0 commit comments

Comments
 (0)