Skip to content

Commit ac00fab

Browse files
committed
Fix homework 3
Signed-off-by: Marcello Seri <[email protected]>
1 parent 9f965b2 commit ac00fab

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

4-cotangentbdl.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -467,7 +467,7 @@ \section{Line integrals}
467467
\end{align}
468468
\end{example}
469469

470-
\begin{exercise}\label{exe:FTC}
470+
\begin{exercise}[\textit{[homework 3]}]\label{exe:FTC}
471471
Let $M$ be a smooth manifold, $\gamma: I = [a,b]\subset \R \to M$ a smooth curve and $\omega\in\fX^*(M)$ a $1$-form.
472472
Show the following properties.
473473
\begin{enumerate}

5-tensors.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -454,7 +454,7 @@ \section{Tensor bundles}
454454
An interesting, not really surprising though (right?), property is the following: $F_* df = d(F_* f)$.
455455
\end{example}
456456

457-
\begin{exercise}
457+
\begin{exercise}[\textit{[homework 3]}]
458458
Let $F:M\to N$ and $G:N\to P$ two diffeomorphisms of smooth manifolds.
459459
\begin{enumerate}
460460
\item Show that the chain rule $(F\circ G)_* = F_* \circ G_*$ holds.

0 commit comments

Comments
 (0)