@@ -52,7 +52,7 @@ \section{Inverse function theorem}
5252\end {exercise }
5353
5454Note that this theorem can fail for manifold with boundary.
55- A counterexample\footnote {Exercise: why?} is given by the inclusion map $ \cH ^n \hookrightarrow \R ^n$ .
55+ A counterexample\footnote {Exercise: why?} is given by the inclusion map $ \cH ^n \hookrightarrow \R ^n$ .
5656
5757An important observation at this point is that the rank of the mapping
5858is a crucial property in the inverse function theorem and it is really a
@@ -84,7 +84,7 @@ \section{Inverse function theorem}
8484
8585\begin {proof }
8686 We start with two important observations.
87-
87+
8888 \newthought {First}. The statement is local on charts: without loss of generality,
8989 we can fix local coordinates on $ M$ and $ N$ respectively centred around $ p$ and $ F(p)$
9090 and replace them altogether by two open subsets $ U\subseteq \R ^m$ and $ V \subseteq \R ^n$ .
@@ -105,15 +105,15 @@ \section{Inverse function theorem}
105105
106106 \newthought {Right hand side}.
107107 Writing $ F(x,y) = (Q(x,y), R(x,y))$ for some smooth maps $ Q: U \to \R ^k$ and $ R: U \to \R ^{n-k}$ ,
108- our choice of coordinates after the above observations implies that
108+ our choice of coordinates after the above observations implies that the gradient of $ Q $ with respect to $ x $ is regular, that is,
109109 $ \det \left ( \frac {\partial Q^i}{\partial x^j} \right ) \neq 0 $ at $ (x,y) = (0 ,0 )$ .
110110
111- Since the gradient of $ Q $ with respect to $ x $ is regular, we are going to extend
112- the mapping with the identity on the rest of the coordinates to get a regular map
111+ In particular, this implies that we can extend the mapping with
112+ the identity on the rest of the coordinates to obtain a regular map
113113 on the whole neighbourhood.
114114 Let $ \varphi : U \to \R ^m$ be defined by $ \varphi (x,y) = (Q(x,y), y)$ . Then,
115115 \begin {equation }
116- D\varphi (0,0) =
116+ D\varphi (0,0) =
117117 \begin {pmatrix }
118118 \frac {\partial Q^i}{\partial x^j}(0,0) & \frac {\partial Q^i}{\partial y^j}(0,0) \\
119119 0 & \id _{\R ^{m-k}}
@@ -130,7 +130,7 @@ \section{Inverse function theorem}
130130 (x,y) = \varphi (A(x,y), B(x,y)) = (Q(A(x,y), B(x,y)), B(x,y)).
131131 \end {equation }
132132 That is, $ B(x,y) = y$ and therefore $ \varphi ^{-1}(x,y) = (A(x,y), y)$ .
133- Moreover, $ \varphi \circ \varphi ^{-1} = \id $ and thus $ ( Q(A(x,y),y) = x$ .
133+ Moreover, $ \varphi \circ \varphi ^{-1} = \id $ and thus $ Q(A(x,y),y) = x$ .
134134
135135 This leaves us with
136136 \begin {equation }
@@ -152,11 +152,11 @@ \section{Inverse function theorem}
152152 The claim then follows from a classical theorem in linear algebra.
153153
154154 Since $ \id _{\R ^k}$ makes the first $ k$ columns of the matrix \eqref {eq:diff_DFp-1 }
155- linearly independent, the matrix can have rank $ k$ only if the derivatives
155+ linearly independent, the matrix can have rank $ k$ only if the derivatives
156156 $ \frac {\partial \widetilde {R}^i}{\partial y^j}$ vanish identically on $ W_0 $ .
157157 That means that $ \widetilde {R}$ is independent of the corresponding variables
158158 $ (y^1 , \ldots , y^{m-k})$ .
159-
159+
160160 Defining $ S(x) = \widetilde {R}(x, 0 )$ , we have
161161 \begin {equation }
162162 F\circ\varphi ^{-1}(x,y) = (x, S(x)).
@@ -165,7 +165,7 @@ \section{Inverse function theorem}
165165 \newthought {Left hand side}.
166166 If we can find a smooth chart $ \psi : V_0 \to \R ^n$ in some neighbourhood $ V_0 $ of $ (0 ,0 )$ ,
167167 we will have concluded the proof.
168- Define
168+ Define
169169 \begin {equation }
170170 \psi (u, v) = (u, v - S(u))
171171 \quad\mbox {on}\quad
@@ -182,7 +182,7 @@ \section{Inverse function theorem}
182182 both $ V$ and $ W_0 $ are neighbourhoods of $ (0 ,0 )$ .
183183 The first claim follows by definition of $ V_0 $ since that requires $ (x,0 )\in W_0 $ ,
184184 which is clearly the case by setting $ y=0 $ .
185-
185+
186186 Putting all pieces together, we get
187187 \begin {equation }
188188 \psi \circ F \circ \varphi ^{-1} (x,y) = \psi (x, S(x)) = (x, S(x) - S(x)) = (x,0),
@@ -489,4 +489,3 @@ \section{Embeddings, submersions and immersions}
489489 \textit {\small Hint: Find a suitable map $ F: \mathrm {Mat}(n, \R ) \to \mathrm {Sym}(n)$ such that $ F^{-1}(\{ p\} ) = O(n)$ for some point $ p$ in the image, e.g. $ 0 $ or $ \id _n$ .
490490 Here $ \mathrm {Sym}(n)$ denotes the space of symmetric matrices. }
491491\end {exercise }
492-
0 commit comments