@@ -443,13 +443,14 @@ \section{Exterior derivative}
443443 Locally, $ \omega = \omega _I dy^I$ , thus we get
444444 \begin {align }
445445 d F^* \omega |_U
446- & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F) F^*(dy^{i_1})\wedge\cdots\wedge F^*(dy^{i_k})\right ) \\
447- & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F) d(y^{i_1} \circ F)\wedge\cdots\wedge d(y^{i_k}\circ F)\right ) \\
448- & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F) dx^{i_1}\wedge\cdots\wedge dx^{i_k}\right ) \\
449- & = \sum _{I=(i_1,\ldots ,i_k)} d(\omega _I\circ F)\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_k} \\
446+ & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F)\, F^*(dy^{i_1})\wedge\cdots\wedge F^*(dy^{i_k})\right ) \\
447+ & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F)\, d(y^{i_1} \circ F)\wedge\cdots\wedge d(y^{i_k}\circ F)\right ) \\
448+ & = d\left ( \sum _{I=(i_1,\ldots ,i_k)}(\omega _I\circ F)\, dx^{i_1}\wedge\cdots\wedge dx^{i_k}\right ) \\
449+ & \stackrel { \eqref { eq:localdw }}{=} \sum _{I=(i_1,\ldots ,i_k)} d(\omega _I\circ F)\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_k} \\
450450 & = \sum _{I=(i_1,\ldots ,i_k)} F^* d(\omega _I)\wedge d(y^{i_1}\circ F)\wedge\cdots\wedge d(y^{i_k}\circ F) \\
451451 & = \sum _{I=(i_1,\ldots ,i_k)} F^* d(\omega _I)\wedge F^*(dy^{i_1})\wedge\cdots\wedge F^*(dy^{i_k}) \\
452- & = F^*(d\omega |_{F(U)}),
452+ & = F^*\left ( \sum _{I=(i_1,\ldots ,i_k)} d\omega _I \wedge dy^{i_1}\wedge\cdots\wedge dy^{i_k} \right ) \\
453+ & \stackrel {\eqref {eq:localdw }}{=} F^*\left (d\omega |_{F(U)}\right ),
453454 \end {align }
454455 where we repeatedly applied Proposition~\ref {thm:pullbacksdifferentialforms } and Exercise~\ref {ex:propdiff } to swap pushforwards and differentials.
455456\end {proof }
@@ -469,8 +470,9 @@ \section{Exterior derivative}
469470 \begin {align }
470471 \varphi _1^*\left (d(\varphi _{1*}\omega )_{\varphi _1(U)}\right )
471472 & = \varphi _2^* (\varphi _2^{-1})^* \varphi _1^*\left (d(\varphi _{1*}\omega )_{\varphi _1(U)}\right ) \\
472- & = \varphi _2^* F^*\left (d(\varphi _{1*}\omega )_{\varphi _1(U)}\right ) \\
473- & = \varphi _2^* \left (d(F^*\varphi _{1*}\omega )_{\varphi _2(U)}\right ) \\
473+ & = \varphi _2^* F^*\left (d(\varphi _{2*}(\varphi _{1}^{-1})_*\varphi _{1*}\omega )_{\varphi _2\circ\varphi _1^{-1}(\varphi _1(U))}\right ) \\
474+ & = \varphi _2^* F^*\left (d(\varphi _{2*}\omega )_{\varphi _2(U)}\right ) \\
475+ & = \varphi _2^* \left (d(F^*\varphi _{2*}\omega )_{\varphi _2(U)}\right ) \\
474476 & = \varphi _2^* \left (d(\varphi _{2*}\omega )_{\varphi _2(U)}\right ).
475477 \end {align }
476478\end {proof }
0 commit comments