Skip to content

Commit fbff4cd

Browse files
committed
Fix typos, add few more references
Signed-off-by: Marcello Seri <[email protected]>
1 parent 313056d commit fbff4cd

File tree

4 files changed

+169
-7
lines changed

4 files changed

+169
-7
lines changed

1-manifolds.tex

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ \section{Topological manifolds}
104104

105105
\begin{definition}[Topological manifold]
106106
A topological space\footnote{From now on, if we say that $X$ is a topological space we are implying that there is a topology $\cT$ defined on $X$.} $M$ is a \emph{topological manifold} of dimension $n$, or topological $n$-manifold, if it has the following properties
107-
\marginnote[0.5em]{Note that the finite dimensionality is a somewhat artificial restriction: manifolds can be infinitely dimensional. For example, the space of continuous functions between manifolds is a so-called infinite-dimensional Banach manifold.\vspace{1em}}
107+
\marginnote[0.5em]{Note that the finite dimensionality is a somewhat artificial restriction: manifolds can be infinitely dimensional~\cite{book:lang:infinite}. For example, the space of continuous functions between manifolds is a so-called infinite-dimensional Banach manifold.\vspace{1em}}
108108
\begin{enumerate}[(i)]
109109
\item $M$ is a Hausdorff space;
110110
\item $M$ is second countable;
@@ -379,7 +379,7 @@ \section{Differentiable manifolds}
379379
\end{example}
380380

381381
Note that smooth manifolds do not yet have a metric structure: distances between the points are not defined.
382-
However, they are \emph{metrizable}\footnote{In fact, all the topological manifolds are metrizable. This property is far more general and harder to prove~\cite[Theorem 34.1 and Exercise 1 of Chapter 4.36]{book:munkres:topology}.}: there exists some metric on the manifold that induces the given topology on it.
382+
However, they are \emph{metrizable}\footnote{In fact, all the topological manifolds are metrizable. This property is far more general and harder to prove~\cite[Theorem 34.1 and Exercise 1 of Chapter 4.36]{book:munkres:topology} or \cite{nlab:urysohn_metrization_theorem}. Note that not all topological spaces are metrizable, for example a space with more than one point endowed with the discrete topology is not. And even if a topological space is metrizable, the metric will be far from unique: for example, proportional metrics generate the same collection of open sets.}: there exists some metric on the manifold that induces the given topology on it.
383383
This allows to always view manifolds as metric spaces.
384384

385385
\begin{example}[A different smooth structure on $\R$]
@@ -684,7 +684,7 @@ \section{Smooth maps and differentiability}
684684
\end{proposition}
685685
\begin{proposition}
686686
Let $M$ be a smooth manifold of dimension $n$.
687-
Then $f:\R^m\to M$ is smooth iff for all charts $(U,\varphi)$ of $M$, the function $\varphi\circ F:F^{-1}(U)\to\R^m$ is smooth.
687+
Then $F:\R^m\to M$ is smooth iff for all charts $(U,\varphi)$ of $M$, the function $\varphi\circ F:F^{-1}(U)\to\R^m$ is smooth.
688688
\end{proposition}
689689
\begin{proposition}
690690
Let $M, N, P$ be three smooth manifolds, and suppose that $F:M\to N$ and $G:N\to P$ are smooth.
@@ -777,8 +777,8 @@ \section{Partitions of unity}
777777
\end{equation}
778778

779779
\begin{exercise}
780-
Prove by induction that for $t>0$ and $k\geq 0$, the $k$th derivative $f^{(k)}(t)$ is of the form $p_{2k}(1/t)e^{-1/t}$ for some polynomial $p_{2k}(x)$ of degree $2k$ in $x$.
781-
Use this to show that $f\in C^\infty(\R)$ and that $f^{(k)}(0) = 0$ for all $k\geq 0$.
780+
Prove by induction that for $t>0$ and $k\geq 0$, the $k$th derivative $h^{(k)}(t)$ is of the form $p_{2k}(1/t)e^{-1/t}$ for some polynomial $p_{2k}(x)$ of degree $2k$ in $x$.
781+
Use this to show that $h\in C^\infty(\R)$ and that $h^{(k)}(0) = 0$ for all $k\geq 0$.
782782
\end{exercise}
783783

784784
The function $f$ that we are seeking is then\footnote{Exercise: check that such function $f$ satisfies all the desired properties.} given by

aom.bbl

Lines changed: 135 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -130,6 +130,46 @@
130130
\verb https://link.springer.com/book/10.1007%2F978-3-642-22597-0
131131
\endverb
132132
\endentry
133+
\entry{book:guillemin-haine}{book}{}
134+
\name{author}{2}{}{%
135+
{{hash=bbc2a3c5f70c5a8262803780ca18f613}{%
136+
family={Guillemin},
137+
familyi={G\bibinitperiod},
138+
given={Victor},
139+
giveni={V\bibinitperiod}}}%
140+
{{hash=a6886d7ee93bf93562455ca12fd79b76}{%
141+
family={Haine},
142+
familyi={H\bibinitperiod},
143+
given={Peter},
144+
giveni={P\bibinitperiod}}}%
145+
}
146+
\list{publisher}{1}{%
147+
{{WORLD} {SCIENTIFIC}}%
148+
}
149+
\strng{namehash}{813dcd968b45f2e93143d31e0ccef03f}
150+
\strng{fullhash}{813dcd968b45f2e93143d31e0ccef03f}
151+
\strng{bibnamehash}{813dcd968b45f2e93143d31e0ccef03f}
152+
\strng{authorbibnamehash}{813dcd968b45f2e93143d31e0ccef03f}
153+
\strng{authornamehash}{813dcd968b45f2e93143d31e0ccef03f}
154+
\strng{authorfullhash}{813dcd968b45f2e93143d31e0ccef03f}
155+
\field{labelalpha}{GH19}
156+
\field{sortinit}{G}
157+
\field{sortinithash}{5e8d2bf9d38de41b1528bd307546008f}
158+
\field{labelnamesource}{author}
159+
\field{labeltitlesource}{title}
160+
\field{month}{3}
161+
\field{title}{Differential Forms}
162+
\field{year}{2019}
163+
\verb{doi}
164+
\verb 10.1142/11058
165+
\endverb
166+
\verb{urlraw}
167+
\verb http://web.archive.org/web/20200525224100/https://math.mit.edu/classes/18.952/2018SP/files/18.952_book.pdf
168+
\endverb
169+
\verb{url}
170+
\verb http://web.archive.org/web/20200525224100/https://math.mit.edu/classes/18.952/2018SP/files/18.952_book.pdf
171+
\endverb
172+
\endentry
133173
\entry{lectures:hitchin}{misc}{}
134174
\name{author}{1}{}{%
135175
{{hash=d0af63589d0e61aaeda653b8860bf668}{%
@@ -195,6 +235,74 @@
195235
\verb https://link.springer.com/book/10.1007%2F978-3-662-55774-7
196236
\endverb
197237
\endentry
238+
\entry{book:lang}{book}{}
239+
\name{author}{1}{}{%
240+
{{hash=88c92ddced8d93c4ed4df52ee477b0c6}{%
241+
family={Lang},
242+
familyi={L\bibinitperiod},
243+
given={Serge},
244+
giveni={S\bibinitperiod}}}%
245+
}
246+
\list{publisher}{1}{%
247+
{Springer-Verlag}%
248+
}
249+
\strng{namehash}{88c92ddced8d93c4ed4df52ee477b0c6}
250+
\strng{fullhash}{88c92ddced8d93c4ed4df52ee477b0c6}
251+
\strng{bibnamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
252+
\strng{authorbibnamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
253+
\strng{authornamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
254+
\strng{authorfullhash}{88c92ddced8d93c4ed4df52ee477b0c6}
255+
\field{labelalpha}{Lan02}
256+
\field{sortinit}{L}
257+
\field{sortinithash}{2c7981aaabc885868aba60f0c09ee20f}
258+
\field{labelnamesource}{author}
259+
\field{labeltitlesource}{title}
260+
\field{title}{Introduction to Differential Manifolds}
261+
\field{year}{2002}
262+
\verb{doi}
263+
\verb 10.1007/b97450
264+
\endverb
265+
\verb{urlraw}
266+
\verb https://doi.org/10.1007%2Fb97450
267+
\endverb
268+
\verb{url}
269+
\verb https://doi.org/10.1007%2Fb97450
270+
\endverb
271+
\endentry
272+
\entry{book:lang:infinite}{book}{}
273+
\name{author}{1}{}{%
274+
{{hash=88c92ddced8d93c4ed4df52ee477b0c6}{%
275+
family={Lang},
276+
familyi={L\bibinitperiod},
277+
given={Serge},
278+
giveni={S\bibinitperiod}}}%
279+
}
280+
\list{publisher}{1}{%
281+
{Springer New York}%
282+
}
283+
\strng{namehash}{88c92ddced8d93c4ed4df52ee477b0c6}
284+
\strng{fullhash}{88c92ddced8d93c4ed4df52ee477b0c6}
285+
\strng{bibnamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
286+
\strng{authorbibnamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
287+
\strng{authornamehash}{88c92ddced8d93c4ed4df52ee477b0c6}
288+
\strng{authorfullhash}{88c92ddced8d93c4ed4df52ee477b0c6}
289+
\field{labelalpha}{Lan99}
290+
\field{sortinit}{L}
291+
\field{sortinithash}{2c7981aaabc885868aba60f0c09ee20f}
292+
\field{labelnamesource}{author}
293+
\field{labeltitlesource}{title}
294+
\field{title}{Fundamentals of Differential Geometry}
295+
\field{year}{1999}
296+
\verb{doi}
297+
\verb 10.1007/978-1-4612-0541-8
298+
\endverb
299+
\verb{urlraw}
300+
\verb https://doi.org/10.1007%2F978-1-4612-0541-8
301+
\endverb
302+
\verb{url}
303+
\verb https://doi.org/10.1007%2F978-1-4612-0541-8
304+
\endverb
305+
\endentry
198306
\entry{book:lee:topology}{book}{}
199307
\name{author}{1}{}{%
200308
{{hash=32fbdee07151a2283306531745546911}{%
@@ -386,6 +494,33 @@
386494
\field{title}{Topology}
387495
\field{year}{2000}
388496
\endentry
497+
\entry{nlab:urysohn_metrization_theorem}{misc}{}
498+
\name{author}{1}{}{%
499+
{{hash=0a89dfdd854d93d67b3632032621fd61}{%
500+
family={{nLab authors}},
501+
familyi={n\bibinitperiod}}}%
502+
}
503+
\strng{namehash}{0a89dfdd854d93d67b3632032621fd61}
504+
\strng{fullhash}{0a89dfdd854d93d67b3632032621fd61}
505+
\strng{bibnamehash}{0a89dfdd854d93d67b3632032621fd61}
506+
\strng{authorbibnamehash}{0a89dfdd854d93d67b3632032621fd61}
507+
\strng{authornamehash}{0a89dfdd854d93d67b3632032621fd61}
508+
\strng{authorfullhash}{0a89dfdd854d93d67b3632032621fd61}
509+
\field{labelalpha}{nLa20}
510+
\field{sortinit}{n}
511+
\field{sortinithash}{f7242c3ed3dc50029fca1be76c497c7c}
512+
\field{labelnamesource}{author}
513+
\field{labeltitlesource}{title}
514+
\field{month}{11}
515+
\field{title}{{{U}}rysohn metrization theorem}
516+
\field{year}{2020}
517+
\verb{urlraw}
518+
\verb http://ncatlab.org/nlab/show/Urysohn%20metrization%20theorem/10
519+
\endverb
520+
\verb{url}
521+
\verb http://ncatlab.org/nlab/show/Urysohn%20metrization%20theorem/10
522+
\endverb
523+
\endentry
389524
\entry{lectures:teufel}{misc}{}
390525
\name{author}{1}{}{%
391526
{{hash=91396cef9166c4f47cfbe40ba6179b13}{%

aom.bib

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,24 @@ @book{book:knauf
6060
url = {https://link.springer.com/book/10.1007%2F978-3-662-55774-7}
6161
}
6262

63+
@book{book:lang,
64+
doi = {10.1007/b97450},
65+
url = {https://doi.org/10.1007%2Fb97450},
66+
year = 2002,
67+
author = {Lang, Serge},
68+
publisher = {Springer-Verlag},
69+
title = {Introduction to Differential Manifolds}
70+
}
71+
72+
@book{book:lang:infinite,
73+
doi = {10.1007/978-1-4612-0541-8},
74+
url = {https://doi.org/10.1007%2F978-1-4612-0541-8},
75+
year = 1999,
76+
publisher = {Springer New York},
77+
author = {Serge Lang},
78+
title = {Fundamentals of Differential Geometry}
79+
}
80+
6381
@book{book:lee,
6482
title = {Introduction to Smooth Manifolds},
6583
author = {Lee, John M.},
@@ -158,3 +176,11 @@ @misc{lectures:teufel
158176
note = {Unpublished lecture notes},
159177
url = {http://web.archive.org/web/20201111215028/https://www.math.uni-tuebingen.de/de/forschung/maphy/personen/stefanteufel/skripte/skript2013.pdf}
160178
}
179+
180+
@misc{nlab:urysohn_metrization_theorem,
181+
author = {{nLab authors}},
182+
title = {{{U}}rysohn metrization theorem},
183+
url = {http://ncatlab.org/nlab/show/Urysohn%20metrization%20theorem/10},
184+
month = nov,
185+
year = 2020
186+
}

aom.tex

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@
207207
\setlength{\parskip}{\baselineskip}
208208
Copyright \copyright\ \the\year\ \thanklessauthor
209209

210-
\par Version 0.4.1 -- \today
210+
\par Version 0.4.2 -- \today
211211

212212
\vfill
213213
\small{\doclicenseThis}
@@ -261,12 +261,13 @@ \chapter*{Introduction}
261261
I have requested for~\cite{book:tu} book to be freely available via SpringerLink using the university proxy but this will take some time to become active.
262262
However, you can already freely access Lee's book via the University proxy on \href{https://link.springer.com/book/10.1007/978-1-4419-9982-5}{SpringerLink} and it will provide a very good and extensive reference for this and other future courses.
263263
The book~\cite{book:McInerney} is a nice compact companion that develops most of this course concept in the specific case of $\R^n$ and could provide further examples and food for thoughts.
264+
A colleague recently mentioned also~\cite{book:lang}. I don't know this book but from a brief look it seems to follow a similar path as these lecture notes, so might provide an alternative reference after all.
264265

265266
The idea for the cut that I want to give to this course was inspired by the online \href{https://www.video.uni-erlangen.de/course/id/242}{Lectures on the Geometric Anatomy of Theoretical Physics} by Frederic Schuller, by the lecture notes of Stefan Teufel's Classical Mechanics course~\cite{lectures:teufel} (in German), by the classical mechanics book by Arnold~\cite{book:arnold} and by the Analysis of Manifold chapter in~\cite{book:thirring}.
266267
In some sense I would like this course to provide the introduction to geometric analysis that I wish was there when I prepared my \href{https://www.mseri.me/lecture-notes-hamiltonian-mechanics/}{first edition} of the Hamiltonian mechanics course.
267268

268269
I am extremely grateful to Martijn Kluitenberg for his careful reading of the notes and his useful comments and corrections.
269-
Many thanks also to Luuk de Ridder and Huub Bouwkamp for reporting a number of misprints.
270+
Many thanks also to Huub Bouwkamp, Luuk de Ridder and Jordan van Ekelenburg for reporting a number of misprints.
270271

271272
\mainmatter
272273

0 commit comments

Comments
 (0)