-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenkeys.py
123 lines (97 loc) · 4.56 KB
/
genkeys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import random
import math
import sys
DEFAULT_KEY_SIZE = 2049
LOW_PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
# calcualte greates common divisor of two number
def gcd(a1, b1):
while a1 != 0:
a1, b1 = b1 % a1, a1
return b1
# fine modular inversor of a and m
def find_modular_inverse(inv_a, inv_m):
if gcd(inv_a, inv_m) != 1:
return None
num_u1, num_u2, num_u3 = 1, 0, inv_a
num_v1, num_v2, num_v3 = 0, 1, inv_m
while num_v3 != 0:
num_q = num_u3 // num_v3
num_v1, num_v2, num_v3, num_u1, num_u2, num_u3 = (num_u1 - num_q * num_v1), (num_u2 - num_q * num_v2), (num_u3 - num_q * num_v3), num_v1, num_v2, num_v3
return num_u1 % inv_m
def get_primes(start_index, stop_index):
if start_index >= stop_index:
return []
primes_array = [2]
for number in range(3, stop_index + 1, 2):
for prime in primes_array:
if number % prime == 0:
break
else:
primes_array.append(number)
while primes_array and primes_array[0] < start_index:
del primes_array[0]
return primes_array
def rabin_miller_find_prime(num):
s_num = num - 1
t_num = 0
while s_num % 2 == 0:
s_num = s_num // 2
t_num += 1
for trials in range(5):
a_num = random.randrange(2, num - 1)
v_num = pow(a_num, s_num, num)
if v_num != 1:
i_index = 0
while v_num != (num - 1):
if i_index == t_num - 1:
return False
else:
i_index = i_index + 1
v_num = (v_num ** 2) % num
return True
def test_if_prime(num):
if (num < 2):
return False
if num in LOW_PRIMES:
return True
for prime in LOW_PRIMES:
if (num % prime == 0):
return False
return rabin_miller_find_prime(num)
# Return a random prime number of keysize bits in size.
def generate_large_prime_of_keySize(key_size=DEFAULT_KEY_SIZE):
while True:
num = random.randrange(2**(key_size-1), 2**(key_size))
if test_if_prime(num):
return num
# Creates a public/private key pair with keys that are keySize bits in
# size. This function may take a while to run.
# Step 1: Create two prime numbers, p and q. Calculate n = p * q.
# Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
# Keep trying random numbers for e until one is valid.
# Step 3: Calculate d, the mod inverse of e.
def generate_private_public_key(default_key_size):
print('********* generating p prime...........')
p = generate_large_prime_of_keySize(default_key_size)
print('********* generating q prime..................')
q = generate_large_prime_of_keySize(default_key_size)
n = p * q
print('\n ******** generating e for (e, N) which is relatively prime to phi(n) = (p-1)*(q-1)........')
while True:
e = random.randrange(2 ** (default_key_size - 1), 2 ** (default_key_size))
if gcd(e, (p - 1) * (q - 1)) == 1:
break
print('\n ******** calculating d for private key that is mod inverse of e... ...')
d = find_modular_inverse(e, (p - 1) * (q - 1))
rsa_public_key = (n, e)
rsa_private_key = (n, d)
return (rsa_public_key, rsa_private_key)
if __name__ == '__main__':
public, private = generate_private_public_key(DEFAULT_KEY_SIZE)
#print ("Your public key is ", public ," and your private key is ", private)
print('\nStoring......... ', sys.argv[1] + ".pub")
with open(sys.argv[1] + ".pub", 'w') as fo:
fo.write('%s,%s,%s' % (DEFAULT_KEY_SIZE, public[0], public[1]))
print('\nStoring.......... ', sys.argv[1] + ".prv")
with open(sys.argv[1] + ".prv", 'w') as fo:
fo.write('%s,%s,%s' % (DEFAULT_KEY_SIZE, private[0], private[1]))