-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
190 lines (177 loc) · 5.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
import numpy as np
import plotly.graph_objects as go
from typing import Tuple
from plotly.subplots import make_subplots
class DummyClassifier:
def __init__(
self, pos_label_args: Tuple[float, float], neg_label_args: Tuple[float, float]
):
self.pos_label_mean, self.pos_label_std = pos_label_args
self.neg_label_mean, self.neg_label_std = neg_label_args
def predict(self, X: np.ndarray, y: np.ndarray) -> np.ndarray:
assert X.ndim == 2
m, n = X.shape
np.random.seed(40)
postives = (
np.random.randn(y[y == 1].shape[0]) * self.pos_label_std
+ self.pos_label_mean
)
np.random.seed(40)
negatives = (
np.random.randn(y[y == 0].shape[0]) * self.neg_label_std
+ self.neg_label_mean
)
return np.concatenate([postives, negatives], axis=-1)
def plot1(
probabilities: np.ndarray, labels: np.ndarray, threshold: float
) -> np.ndarray:
confusion_matrix = [[0, 0], [0, 0]]
for actual, predicted in zip(labels, (probabilities >= threshold).astype(np.uint8)):
confusion_matrix[actual][predicted] += 1
fig = make_subplots(rows=2, cols=1)
fig.add_trace(
go.Histogram(x=probabilities[labels == 1], name="Positive Labels", nbinsx=100),
row=1,
col=1,
)
fig.add_trace(
go.Histogram(x=probabilities[labels == 0], name="Negatives Labels", nbinsx=100),
row=1,
col=1,
)
fig["layout"]["xaxis"]["title"] = "Model Output Probabilities"
fig["layout"]["yaxis"]["title"] = "Num Counts"
# Add vertical line at the threshold
fig.add_shape(
type="line",
x0=threshold,
x1=threshold,
y0=0,
y1=len(labels) / 10,
line=dict(color="lightgray", dash="dot"),
)
text = [["TN: ", "FP: "], ["FN: ", "TP: "]]
for i in range(2):
for j in range(2):
text[i][j] += str(confusion_matrix[i][j])
# Create the confusion matrix plot
fig.add_trace(
go.Heatmap(
z=confusion_matrix,
x=["Predicted negative", "Predicted positive"],
y=["Actual negative", "Actual positive"],
colorscale="gray",
showscale=False,
reversescale=True,
text=text,
hoverinfo="text",
texttemplate="%{text}",
textfont={"size": 20},
),
row=2,
col=1,
)
fig.update_layout(
title_text=f"Histogram Plot and Confusion matrix for thershold = {threshold}",
width=800,
height=800,
)
st.plotly_chart(fig)
return confusion_matrix
def make_tpr_fpr(
probabilities: np.ndarray, labels: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
# Data for the AUC-ROC curve
fpr = []
tpr = []
for t in range(11):
t = t / 10
confusion_matrix = [[0, 0], [0, 0]]
for actual, predicted in zip(labels, (probabilities >= t).astype(np.uint8)):
confusion_matrix[actual][predicted] += 1
fn, tp = confusion_matrix[1]
tn, fp = confusion_matrix[0]
tpr.append(tp / (tp + fn + 1e-20))
fpr.append(fp / (fp + tn + 1e-20))
return np.array(tpr), np.array(fpr)
def plot2(
probabilities: np.ndarray,
labels: np.ndarray,
tpr: np.ndarray,
fpr: np.ndarray,
threshold: float,
area: bool = False,
) -> np.ndarray:
fig = make_subplots(rows=2, cols=1)
fig.add_trace(
go.Histogram(x=probabilities[labels == 1], name="Positive labels", nbinsx=100),
row=1,
col=1,
)
fig.add_trace(
go.Histogram(x=probabilities[labels == 0], name="Negative labels", nbinsx=100),
row=1,
col=1,
)
fig["layout"]["xaxis"]["title"] = "Model Output Probabilities"
fig["layout"]["yaxis"]["title"] = "Num Counts"
# Add vertical line at the threshold
fig.add_shape(
type="line",
x0=threshold,
x1=threshold,
y0=0,
y1=len(labels) / 10,
line=dict(color="lightgray", dash="dot"),
name="threshold",
)
# Roc curve
if area:
fig.add_trace(
go.Scatter(
x=fpr, y=tpr, mode="lines", fill="tozeroy", name="AUC ROC Curve"
),
row=2,
col=1,
)
else:
fig.add_trace(
go.Scatter(x=fpr, y=tpr, mode="lines", name="ROC Curve"), row=2, col=1
)
n = len(tpr)
rand_series = np.arange(n) / 10
fig.add_trace(
go.Scatter(
x=rand_series,
y=rand_series,
mode="lines",
name="Random Classifier",
line=dict(color="gray", dash="dot"),
),
row=2,
col=1,
)
fig.update_layout(
title="Prob distribution and ROC curve",
xaxis2=dict(title="FPR"),
yaxis2=dict(title="TPR"),
xaxis2_range=[0, 1],
yaxis2_range=[0, 1],
showlegend=True,
height=800,
)
fig.add_annotation(
x=fpr[int(threshold * 10)],
y=tpr[int(threshold * 10)],
ax=0,
ay=-40,
text=f"threshold={threshold}",
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
row=2,
col=1,
)
st.plotly_chart(fig)