If you are using the TensorRT Python API and PyCUDA isn’t already installed on your system, see Installing PyCUDA.
Note: When installing PyCUDA, ensure that you have NumPy installed beforehand. If not, run the following command before proceeding:
python3 -m pip install numpy
To install PyCUDA first make sure nvcc is in your PATH, then issue the following command:
python3 -m pip install 'pycuda<2021.1'
- Go to: https://developer.nvidia.com/tensorrt.
- Click GET STARTED, then click Download Now.
- Select the version of TensorRT that you are interested in.
- Select the check-box to agree to the license terms.
- Click the package you want to install. Your download begins.
Install TensorRT from the Debian local repo package. Replace ubuntuxx04, cudax.x, trt8.x.x.x and yyyymmdd with your specific OS version, CUDA version, TensorRT version and package date
os="ubuntu1804"
tag="cuda10.2-trt7.2.3.4-ga-20210226"
sudo dpkg -i nv-tensorrt-repo-${os}-${tag}_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-${os}-${tag}/7fa2af80.pub
sudo apt-get update
sudo apt-get install tensorrt
If using Python 3.x:
python3 -m pip install numpy
sudo apt-get install python3-libnvinfer-dev
The following additional packages will be installed: python3-libnvinfer
If you plan to use TensorRT with TensorFlow:
python3 -m pip install protobuf
sudo apt-get install uff-converter-tf
The graphsurgeon-tf package will also be installed with the above command.
If you would like to run the samples that require ONNX graphsurgeon or use the Python module for your own project, run:
python3 -m pip install numpy onnx
sudo apt-get install onnx-graphsurgeon
Verify the installation.
dpkg -l | grep TensorRT
You should see something similar to the following:
ii graphsurgeon-tf 8.4.0-1+cuda11.6 amd64 GraphSurgeon for TensorRT package
ii libnvinfer-bin 8.4.0-1+cuda11.6 amd64 TensorRT binaries
ii libnvinfer-dev 8.4.0-1+cuda11.6 amd64 TensorRT development libraries and headers
ii libnvinfer-doc 8.4.0-1+cuda11.6 all TensorRT documentation
ii libnvinfer-plugin-dev 8.4.0-1+cuda11.6 amd64 TensorRT plugin libraries
ii libnvinfer-plugin8 8.4.0-1+cuda11.6 amd64 TensorRT plugin libraries
ii libnvinfer-samples 8.4.0-1+cuda11.6 all TensorRT samples
ii libnvinfer8 8.4.0-1+cuda11.6 amd64 TensorRT runtime libraries
ii libnvonnxparsers-dev 8.4.0-1+cuda11.6 amd64 TensorRT ONNX libraries
ii libnvonnxparsers8 8.4.0-1+cuda11.6 amd64 TensorRT ONNX libraries
ii libnvparsers-dev 8.4.0-1+cuda11.6 amd64 TensorRT parsers libraries
ii libnvparsers8 8.4.0-1+cuda11.6 amd64 TensorRT parsers libraries
ii python3-libnvinfer 8.4.0-1+cuda11.6 amd64 Python 3 bindings for TensorRT
ii python3-libnvinfer-dev 8.4.0-1+cuda11.6 amd64 Python 3 development package for TensorRT
ii tensorrt 8.4.0.x-1+cuda11.6 amd64 Meta package of TensorRT
ii uff-converter-tf 8.4.0-1+cuda11.6 amd64 UFF converter for TensorRT package
ii onnx-graphsurgeon 8.4.0-1+cuda11.6 amd64 ONNX GraphSurgeon for TensorRT package
version="8.4.0-1+cuda11.6"
sudo apt-get install libnvinfer8=${version} libnvonnxparsers8=${version} libnvparsers8=${version} libnvinfer-plugin8=${version} libnvinfer-dev=${version} libnvonnxparsers-dev=${version} libnvparsers-dev=${version} libnvinfer-plugin-dev=${version} python3-libnvinfer=${version}
sudo apt-mark hold libnvinfer8 libnvonnxparsers8 libnvparsers8 libnvinfer-plugin8 libnvinfer-dev libnvonnxparsers-dev libnvparsers-dev libnvinfer-plugin-dev python3-libnvinfer