-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cnn.py
54 lines (46 loc) · 1.95 KB
/
run_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# As usual, a bit of setup
import numpy as np
from deeplearning.classifiers.cnn import *
from deeplearning.data_utils import get_CIFAR10_data
from deeplearning.fast_layers import *
from deeplearning.solver import Solver
def load_data():
# Load the (preprocessed) CIFAR10 data.
data = get_CIFAR10_data()
for k, v in data.iteritems():
print '%s: ' % k, v.shape
return data
def run_cnns():
data = load_data()
num_train = 20000
small_data = {
'X_train': data['X_train'][:num_train],
'y_train': data['y_train'][:num_train],
'X_val': data['X_val'],
'y_val': data['y_val'],
}
best_acc, best_model = float('-inf'), None
learning_rates = np.logspace(-4, -2, 8)
weight_scales = np.logspace(-4, -2.5, 8)
for lr in learning_rates:
for ws in weight_scales:
# Train a really good model on CIFAR-10
model = ConvNet(hidden_dims=(500,), dropouts=(0.2, 0.3, 0.4), num_filters=(32, 64), N=2, M=1,
input_dim=(3, 32, 32), filter_size=3, num_classes=10, weight_scale=ws,
dtype=np.float32, seed=None, use_batchnorm=True)
solver = Solver(model, small_data,
num_epochs=2, batch_size=200,
update_rule='adam',
optim_config={
'learning_rate': lr,
},
lr_decay=1 - 1e-6,
verbose=True, print_every=20)
solver.train()
if solver.best_val_acc > best_acc:
print "******************************************************"
best_model, best_acc = model, solver.best_val_acc
print("best valid acc yet: %f lr: %e ws: %e" % (best_acc, lr, ws))
print "******************************************************"
if __name__ == "__main__":
run_cnns()