-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBundleAdjustment.py
91 lines (69 loc) · 2.89 KB
/
BundleAdjustment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
from scipy.optimize import least_squares
from scipy.sparse import lil_matrix
from BuildVisibilityMatrix import *
import time
from Plotting import *
def compute_error(K, pts_2d, param_cam, world_pts_3d):
ones = np.ones((world_pts_3d.shape[0], 1))
world_pts_3d = np.hstack((world_pts_3d, ones))
pt_img_proj = np.empty((0, 2), dtype=np.float32)
for i, p in enumerate(world_pts_3d):
R = to_euler(param_cam[i, :4])
C = param_cam[i, 4:]
M = projection_matrix(K, R, C)
p = p.reshape((4, 1))
proj_pt = np.dot(M, p)
proj_pt = proj_pt/proj_pt[2]
proj_pt = proj_pt[:2]
proj_pt = proj_pt.reshape((1, 2))
pt_img_proj = np.append(pt_img_proj, proj_pt, axis=0)
reproj_err = pts_2d - pt_img_proj
# reproj_err = reproj_err**2
# reproj_err = np.sum(reproj_err, axis=1)
return reproj_err.ravel()
def get_params(pose_set, X_world_all, map_2d_3d):
# defining the params, 2d points, 3d points' indices
x0 = np.empty(0, dtype=np.float32)
indices = np.empty(0, dtype=int)
pts_2d = np.empty((0, 2), dtype=np.float32)
indices_cam = np.empty(0, dtype=int)
n_cam = max(pose_set.keys())
# for each camera pose
for k in pose_set.keys():
# convert to quaternion
Q = to_quaternion(pose_set[k][:, 0:3])
C = pose_set[k][:, 3]
# append the parameters
x0 = np.append(x0, Q.reshape(-1), axis=0)
x0 = np.append(x0, C, axis=0)
for p in map_2d_3d[k]:
indices = np.append(indices, [p[1]], axis=0)
pts_2d = np.append(pts_2d, [p[0]], axis=0)
indices_cam = np.append(indices_cam, [k-1], axis=0)
x0 = np.append(x0, X_world_all.flatten(), axis=0)
n_3d = X_world_all.shape[0]
return n_cam, n_3d, indices, pts_2d, indices_cam, x0
def loss(x0, n_cam, n_3d, indices, pts_2d, indices_cam, K):
param_cam = x0[:n_cam*7].reshape((n_cam, 7))
world_pts_3d = x0[n_cam*7:].reshape((-1, 3))
reproj_err = compute_error(K, pts_2d, param_cam[indices_cam], world_pts_3d[indices])
return reproj_err
def bundle_adjustment(pose_set, X_world_all, map_2d_3d, K):
n_cam, n_3d, indices, pts_2d, indices_cam, x0 = get_params(pose_set, X_world_all, map_2d_3d)
A = sparse_matrix(n_cam, n_3d, indices_cam, indices)
start = time.time()
result = least_squares(fun=loss, x0=x0, jac_sparsity=A, verbose=2, x_scale='jac',
ftol=1e-4, method='trf', args=(n_cam, n_3d, indices, pts_2d, indices_cam, K))
end = time.time()
print("optimisation took -- {} seconds".format(start-end))
param_cam = result.x[:n_cam*7].reshape((n_cam, 7))
X_world_all_opt = result.x[n_cam*7:].reshape((n_3d, 3))
pose_set_opt = {}
i = 1
for cp in param_cam:
R = to_euler(cp[:4])
C = cp[4:].reshape((3, 1))
pose_set_opt[i] = np.hstack((R, C))
i += 1
return pose_set_opt, X_world_all_opt