-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLinearTriangulation.py
57 lines (41 loc) · 1.33 KB
/
LinearTriangulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import cv2
def point_triangulation(k,pt1,pt2,R1,C1,R2,C2):
points_3d = []
I = np.identity(3)
C1 = C1.reshape(3,1)
C2 = C2.reshape(3,1)
#calculating projection matrix P = K[R|T]
P1 = np.dot(k,np.dot(R1,np.hstack((I,-C1))))
P2 = np.dot(k,np.dot(R2,np.hstack((I,-C2))))
#homogeneous coordinates for images
xy = np.hstack((pt1,np.ones((len(pt1),1))))
xy_cap = np.hstack((pt2,np.ones((len(pt1),1))))
p1,p2,p3 = P1
p1_cap, p2_cap,p3_cap = P2
#constructing contraints matrix
for i in range(len(xy)):
A = []
x = xy[i][0]
y = xy[i][1]
x_cap = xy_cap[i][0]
y_cap = xy_cap[i][1]
A.append((y*p3) - p2)
A.append((x*p3) - p1)
A.append((y_cap*p3_cap)- p2_cap)
A.append((x_cap*p3_cap) - p1_cap)
A = np.array(A).reshape(4,4)
_, _, v = np.linalg.svd(A)
x_ = v[-1,:]
x_ = x_/x_[-1]
# x_ =x_[:3]
points_3d.append(x_)
return np.array(points_3d)
def linear_triangulation(R_Set,T_Set,pt1,pt2,k):
R1_ = np.identity(3)
T1_ = np.zeros((3,1))
points_3d_set = []
for i in range(len(R_Set)):
points3d = point_triangulation(k,pt1,pt2,R1_,T1_,R_Set[i],T_Set[i])
points_3d_set.append(points3d)
return points_3d_set